某工厂打算设计一种容积为2m3的密闭容器用于贮藏原料,容器的形状是如图所示的直四棱柱,其底面是边长为x米的正方形,假设该容器的底面及侧壁的厚度均可忽略不计.

(1)请你确定x的值,使得该容器的外表面积最小;
(2)若该容器全部由某种每平方米价格为100元的材料做成,且制作该容器仅需将购置的材料做成符合需要的矩形,这些矩形即是直四棱柱形容器的上下底面和侧面(假设这一过程中产生的费用和材料损耗可忽略不计),再将这些上下底面和侧面的边缘进行焊接即可做成该容器,焊接费用是每米500元,试确定x的值,使得生产每个该种容器的成本(即原料购置成本+焊接费用)最低.
当前题号:1 | 题型:解答题 | 难度:0.99
如图,有一块半圆形空地,开发商计划建造一个矩形游泳池及左右两侧两个大小相同的矩形休息区,其中半圆的圆心为,半径为,矩形的一边上,矩形的一边上,点在圆周上,在直径上,且,设.若每平方米游泳池的造价与休息区造价之比为.

(1)记游泳池及休息区的总造价为,求的表达式;
(2)为进行投资预算,当为何值时,总造价最大?并求出总造价的最大值.
当前题号:2 | 题型:解答题 | 难度:0.99
海轮每小时使用的燃料费与它的航行速度的立方成正比,已知某海轮的最大航速为海里/小时,当速度为海里/小时时,它的燃料费是每小时元,其余费用(无论速度如何)都是每小时.如果甲乙两地相距海里,则要使该海轮从甲地航行到乙地的总费用最低,它的航速应为(   )
A.海里/小时B.海里/小时
C.海里/小时D.海里/小时
当前题号:3 | 题型:单选题 | 难度:0.99
设甲、乙两地相距400千米,汽车从甲地匀速行驶到乙地,速度不得超过100千米/小时,已知该汽车每小时的运输成本P(元)关于速度v(千米/小时)的函数关系是.
(1)求全程运输成本Q(元)关于速度v的函数关系式;
(2)为使全程运输成本最少,汽车应以多大速度行驶?并求此时运输成本的最小值.
当前题号:4 | 题型:解答题 | 难度:0.99
欲制作一个容积为的圆柱形蓄水罐(无盖),为能使所用的材料最省,它的底面半径应为(   )
A.B.C.D.
当前题号:5 | 题型:单选题 | 难度:0.99
运货卡车以每小时千米的速度匀速行驶千米,按交通法规则限制(单位:千米/小时),假设汽油的价格是每升元,而汽车每小时耗油升,司机工资是每小时元.
(1)求这次行车总费用关于的表达式;
(2)当为何值时,这次行车的总费用最低,并求出最低费用的值.(精确到
当前题号:6 | 题型:解答题 | 难度:0.99
如图,某湿地公园的鸟瞰图是一个直角梯形,其中:长1千米,千米,公园内有一个形状是扇形的天然湖泊,扇形长为半径,弧为湖岸,其余部分为滩地,BD点是公园的进出口.公园管理方计划在进出口之间建造一条观光步行道:线段线段,其中Q在线段上(异于线段端点),与弧相切于P点(异于弧端点]根据市场行情段的建造费用是每千米10万元,湖岸段弧的建造费用是每千米万元(步行道的宽度不计),设弧度观光步行道的建造费用为万元.

(1)求步行道的建造费用关于的函数关系式,并求其走义域;
(2)当为何值时,步行道的建造费用最低?
当前题号:7 | 题型:解答题 | 难度:0.99
某农业观光区的平面示意图如图所示,其中矩形的长千米,宽千米,半圆的圆心中点,为了便于游客观光休闲,在观光区铺设一条由圆弧、线段组成的观光道路,其中线段经过圆心,点在线段上(不含线段端点),已知道路的造价为每千米万元,道路造价为每千米 万元,设,观光道路的总造价为.

(1)试求的函数关系式,并写出的取值范围;
(2)当为何值时,观光道路的总造价最小.
当前题号:8 | 题型:解答题 | 难度:0.99
货车欲以xkm/h的速度行驶,去130km远的某地,按交通法规,限制x的允许范围是50≤x≤100,假设汽油的价格为2元/升,而汽车耗油的速率是升/小时.司机的工资是14元/小时,试问最经济的车速是多少?这次行车往返的总费用最低是多少?
当前题号:9 | 题型:解答题 | 难度:0.99
某市有一特色酒店由一些完全相同的帐篷构成.每座帐篷的体积为立方米,且分上下两层,其中上层是半径为(单位:米)的半球体,下层是半径为米,高为米的圆柱体(如图).经测算,上层半球体部分每平方米建造费用为2千元,下方圆柱体的侧面、隔层和地面三个部分平均每平方米建造费用为3千元,设每座帐篷的建造费用为千元.
参考公式:球的体积,球的表面积,其中为球的半径.

(1)求关于的函数解析式,并指出该函数的定义域;
(2)当半径为何值时,每座帐篷的建造费用最小,并求出最小值.
当前题号:10 | 题型:解答题 | 难度:0.99