- 集合与常用逻辑用语
- 函数与导数
- 导数在函数中的其他应用
- + 利用导数解决实际应用问题
- 利润最大问题
- 面积、体积最大问题
- 成本最小问题
- 用料最省问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
将半径为
的圆形铁皮剪去一个圆心角为
的扇形,用剩下的扇形铁皮制成一个圆锥形的容器,该圆锥的高记为
,体积为
.

(1)求体积
有关
的函数解析式.
(2)求当扇形的圆心角
多大时,容器的体积
最大.





(1)求体积


(2)求当扇形的圆心角


某厂生产某种产品
件的总成本
(单位:万元),又知产品单价的平方与产品件数
成反比,生产
件这样的产品单价为
万元,则产量定为______ 件时总利润最大.





在即将进入休渔期时,某小微企业决定囤积一些冰鲜产品,销售所囤积产品的净利润
万元与投入x万元之间近似满足函数关系:
,若投入2万元,可得到净利润5.2万元.
(1)试求实数a的值,并求该小微企业投入多少万元时,获得的净利润最大;
(2)请判断该小微企业是否会亏本,若亏本,求出投入资金的范围;若不亏本,请说明理由.(参考数据:
,
,此题运算过程及结果都用此参考数据计算.)


(1)试求实数a的值,并求该小微企业投入多少万元时,获得的净利润最大;
(2)请判断该小微企业是否会亏本,若亏本,求出投入资金的范围;若不亏本,请说明理由.(参考数据:


某企业拟生产一种如图所示的圆柱形易拉罐(上下底面及侧面的厚度不计),易拉罐的体积为
,设圆柱的高度为
,底面半径为
,且
,假设该易拉罐的制造费用仅与其表面积有关.已知易拉罐侧面制造费用为
元
,易拉罐上下底面的制造费用均为
元
为常数).

(1)写出易拉罐的制造费用
(元)关于
的函数表达式,并求其定义域;
(2)求易拉罐制造费用最低时
的值.









(1)写出易拉罐的制造费用


(2)求易拉罐制造费用最低时

现将一根长为180 cm的木条制造成一个长方体形状的木质框架,要求长方体的长与宽之比为
,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?
