现拟建一个粮仓,如图1所示,粮仓的轴截而如图2所示,EDECADBCBCABEFABCDEF于点GEFFC=10m

(1)设∠CFBθ,求粮仓的体积关于θ的函数关系式;
(2)当sinθ为何值时,粮仓的体积最大?
当前题号:1 | 题型:解答题 | 难度:0.99
某公司生产一种产品,固定成本为元,每生产一单位的产品,成本增加元,若总收入与年产量的关系是,则当总利润最大时,每年生产的产品单位数是(   )
A.B.C.D.
当前题号:2 | 题型:单选题 | 难度:0.99
已知某生产厂家的年利润(单位:万元)与年产量(单位:万件)的函数关系式为,则使该生产厂家获得最大年利润的年产量为
A.13万件B.11万件
C.9万件D.7万件
当前题号:3 | 题型:单选题 | 难度:0.99
将长为的铁丝截成12段,搭成一个正四棱柱的骨架,以此骨架做成一个正四棱柱容器,则此容器的最大容积为(   )
A.B.C.D.
当前题号:4 | 题型:单选题 | 难度:0.99
如图,某公园内有两条道路,现计划在上选择一点,新建道路,并把所在的区域改造成绿化区域.已知
(1)若绿化区域的面积为,求道路的长度;
(2)若绿化区域改造成本为10万元,新建道路成本为10万元.设,当为何值时,该计划所需总费用最小?
当前题号:5 | 题型:解答题 | 难度:0.99
某制药厂准备投入适当的广告费,对产品进行宣传,在一年内,预计年销量Q(万件)与广告费x(万元)之间的函数关系为Qx≥0).已知生产此产品的年固定投入为3万元,每生产1万件此产品仍需后期再投入32万元,若每件售价为“年平均每件投入的150%”与“年平均每件所占广告费的50%”之和(注:投入包括“年固定投入”与“后期再投入”).
(1)试将年利润w万元表示为年广告费x万元的函数,并判断当年广告费投入100万元时,企业亏损还是盈利?
(2)当年广告费投入多少万元时,企业年利润最大?
当前题号:6 | 题型:解答题 | 难度:0.99
某城市为配合国家“一带一路”战略,发展城市旅游经济,拟在景观河道的两侧,沿河岸直线修建景观(桥),如图所示,河道为东西方向,现要在矩形区域内沿直线将接通.已知,河道两侧的景观道路修复费用为每米万元,架设在河道上方的景观桥部分的修建费用为每米万元.

(1)若景观桥长时,求桥与河道所成角的大小;
(2)如何景观桥的位置,使矩形区域内的总修建费用最低?最低总造价是多少?
当前题号:7 | 题型:解答题 | 难度:0.99
某公司准备投产一种新产品,经测算,已知每年生产万件的该种产品所需要的总成本(万元),依据产品尺寸,产品的品质可能出现优、中、差三种情况,随机抽取了1000件产品测量尺寸,尺寸分别在(单位:)中,经统计得到的频率分布直方图如图所示.

产品的品质情况和相应的价格(元/件)与年产量之间的函数关系如下表所示.
产品品质
立品尺寸的范围
价格与产量的函数关系式









 
以频率作为概率解决如下问题:
(1)求实数的值;
(2)当产量确定时,设不同品质的产品价格为随机变量,求随机变量的分布列;
(3)估计当年产量为何值时,该公司年利润最大,并求出最大值.
当前题号:8 | 题型:解答题 | 难度:0.99
现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥,下部分的形状是正四棱柱(如图所示),并要求正四棱柱的高是正四棱锥的高的4倍.

(1)若则仓库的容积是多少?
(2)若正四棱锥的侧棱长为,则当为多少时,仓库的容积最大?
当前题号:9 | 题型:解答题 | 难度:0.99
(本小题满分14分)
下图(I)是一斜拉桥的航拍图,为了分析大桥的承重情况,研究小组将其抽象成图(II)所示的数学模型.索塔与桥面均垂直,通过测量知两索塔的高度均为60m,桥面上一点到索塔距离之比为,且对两塔顶的视角为
(1)求两索塔之间桥面的长度;
(2)研究表明索塔对桥面上某处的“承重强度”与多种因素有关,可简单抽象为:某索塔对桥面上某处的“承重强度”与索塔的高度成正比(比例系数为正数),且与该处到索塔的距离的平方成反比(比例系数为正数).问两索塔对桥面何处的“承重强度”之和最小?并求出最小值.
当前题号:10 | 题型:解答题 | 难度:0.99