- 集合与常用逻辑用语
- 函数与导数
- 导数在函数中的其他应用
- + 利用导数解决实际应用问题
- 利润最大问题
- 面积、体积最大问题
- 成本最小问题
- 用料最省问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,某公园内有两条道路
,
,现计划在
上选择一点
,新建道路
,并把
所在的区域改造成绿化区域.已知
,
.

(1)若绿化区域
的面积为1
,求道路
的长度;
(2)若绿化区域
改造成本为10万元/
,新建道路
成本为10万元/
.设
(
),当
为何值时,该计划所需总费用最小?










(1)若绿化区域



(2)若绿化区域







某商场为了获得更大的利润,每年要投入一定的资金用于广告促销.经调查,每年投入广告费
(百万元),可增加的销售额为
(百万元)
.
(1)若该商场将当年的广告费控制在三百万元以内,则应投入多少广告费,才能使公司由广告费而产生的收益最大?(注:收益=销售额-投入费用)
(2)现在该商场准备投入三百万元,分别用于广告促销和技术改造.经预算,每投入技术改造费
(百万元),可增加的销售额约为
(百万元),请设计一个资金分配方案,使该商场由这两项共同产生的收益最大.



(1)若该商场将当年的广告费控制在三百万元以内,则应投入多少广告费,才能使公司由广告费而产生的收益最大?(注:收益=销售额-投入费用)
(2)现在该商场准备投入三百万元,分别用于广告促销和技术改造.经预算,每投入技术改造费


国务院批准从2009年起,将每年8月8日设置为“全民健身日”,为响应国家号召,各地利用已有土地资源建设健身场所.如图,有一个长方形地块
,边
为
,
为
.地块的一角是草坪(图中阴影部分),其边缘线
是以直线
为对称轴,以
为顶点的抛物线的一部分.现要铺设一条过边缘线
上一点
的直线型隔离带
,
,
分别在边
,
上(隔离带不能穿越草坪,且占地面积忽略不计),将隔离出的
作为健身场所.则
的面积为
的最大值为____________ (单位:
).




















如图所示,在边长为60 cm的正方形铁片的四角上切去相等的正方形,再把它沿虚线折起,做成一个无盖的长方体箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?

如图,直线l和圆C,当l从l0开始在平面上绕点O按逆时针方向匀速转到(转到角不超过90°)时,它扫过的圆内阴影部分的面积S是时间t的函数,这个函数的图像大致是( )


A.![]() | B.![]() |
C.![]() | D.![]() |