- 集合与常用逻辑用语
- 函数与导数
- 导数在函数中的其他应用
- + 利用导数解决实际应用问题
- 利润最大问题
- 面积、体积最大问题
- 成本最小问题
- 用料最省问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某地政府为科技兴市,欲在如图所示的矩形
的非农业用地中规划出一个高科技工业园区(如图中阴影部分),形状为直角梯形
(线段
和
为两个底边),已知
,其中
曲线段
是以
为顶点、
为对称轴的抛物线的一部分.分别以直线
为
轴和
轴建立平面直角坐标系.

(1)求曲线段
所在抛物线的方程;
(2)设点
的横坐标为
,高科技工业园区的面积为
.试求
关于
的函数表达式,并求出工业园区面积
的最大值.













(1)求曲线段

(2)设点






某企业有A、B两种型号的家电产品参加家电下乡活动,若企业投放A、B两种型号家电产品的价值分别为
、
万元,则农民购买家电产品获得的补贴分别为
万元、
万元(
且为常数),已知该企业投放总价值为100万元的A、B两种型号的家电产品,且A、B两种型号的投放金额都不低于10万元.
(1)请你选择自变量,将这次活动中农民得到的总补贴表示为它的函数,并求其定义域;
(2)问A、B两种型号的家电产品各投放多少万元时,农民得到的总补贴最多?





(1)请你选择自变量,将这次活动中农民得到的总补贴表示为它的函数,并求其定义域;
(2)问A、B两种型号的家电产品各投放多少万元时,农民得到的总补贴最多?
如图,某兴趣小组测得菱形养殖区
的固定投食点
到两条平行河岸线
的距离分别为4m、8m,河岸线
与该养殖区的最近点
的距离为1m,
与该养殖区的最近点
的距离为2m.
(1)如图甲,养殖区在投食点
的右侧,若该小组测得
,请据此算出养殖区的面积;
(2)如图乙,养殖区在投食点
的两侧,试在该小组未测得
的大小的情况下,估算出养殖区的最小面积.







(1)如图甲,养殖区在投食点


(2)如图乙,养殖区在投食点



某唱片公司要发行一张名为《春风再美也比不上你的笑》的唱片,包含《新花好月圆》、《荷塘月色》等10首创新经典歌曲.该公司计划用
(百万元)请李子恒老师进行创作,经调研知:该唱片的总利润
(百万元)与
成正比的关系,当
时
.又有
,其中
是常数,且
.
(Ⅰ)设
,求其表达式,定义域(用
表示);
(Ⅱ)求总利润
的最大值及相应的
的值.








(Ⅰ)设


(Ⅱ)求总利润


做一个体积为32
,高为2
的长方体纸盒.
(1)若用
表示长方体底面一边的长,
表示长方体的表面积,试写出
关于
的函数关系式;
(2)当
取什么值时,做一个这样的长方体纸盒用纸最少?最少用纸多少
?


(1)若用




(2)当


某城市计划在如图所示的空地
上竖一块长方形液晶广告屏幕
,宣传该城市未来十年计划、目标等相关政策.已知四边形
是边长为30米的正方形,电源在点
处,点
到边
的距离分别为9米,3米,且
,线段
必过点
,端点
分别在边
上,设
米,液晶广告屏幕
的面积为
平方米.
(Ⅰ)求
关于
的函数关系式及其定义域;
(Ⅱ)当
为何值时,液晶广告屏幕
的面积
最小?














(Ⅰ)求


(Ⅱ)当



