刷题首页
题库
高中数学
题干
某城市计划在如图所示的空地
上竖一块长方形液晶广告屏幕
,宣传该城市未来十年计划、目标等相关政策.已知四边形
是边长为30米的正方形,电源在点
处,点
到边
的距离分别为9米,3米,且
,线段
必过点
,端点
分别在边
上,设
米,液晶广告屏幕
的面积为
平方米.
(Ⅰ)求
关于
的函数关系式及其定义域;
(Ⅱ)当
为何值时,液晶广告屏幕
的面积
最小?
上一题
下一题
0.99难度 解答题 更新时间:2012-03-07 11:20:08
答案(点此获取答案解析)
同类题1
已知抛物线
的焦点为
,直线
与抛物线交于不同的两点
,
.若
,则
的面积的最大值是__________.
同类题2
已知六棱锥
,底面
为正六边形,点
在底面的射影为其中心.将该六棱锥沿六条侧棱剪开,使六个侧面和底面展开在同一平面上,若展开后点
在该平面上对应的六个点全部落在一个半径为5的圆上,则当正六边形
的边长变化时,所得六棱锥体积的最大值为__________.
同类题3
用一个半径为
的钢质球通过切削加工成一个正六棱柱,为了充分利用材料,要使加工的正六棱柱体积最大,则最大体积为_____________.
同类题4
(题文)某商场为促销要准备一些正三棱锥形状的装饰品,用半径为
的圆形包装纸包装.要求如下:正三棱锥的底面中心与包装纸的圆心重合,包装纸不能裁剪,沿底边向上翻折,其边缘恰好达到三棱锥的顶点,如图所示.设正三棱锥的底面边长为
,体积为
.
(1)求
关于
的函数关系式;
(2)在所有能用这种包装纸包装的正三棱锥装饰品中,
的最大值是多少?并求此时
的值.
同类题5
如图,以两条互相垂直的公路所在直线分别为x轴,y轴建立平面直角坐标系,公路附近有一居民区EFG和一风景区,其中
单位:百米
,
,风景区的部分边界为曲线C,曲线C的方程为
,拟在居民和风景区间辟出一个三角形区域EMN用于工作人员办公,点M,N分别在x轴和EF上,且MN与曲线C相切于P点.
设P点的横坐标为t,写出
面积的函数表达式
;
当t为何值时,
面积最小?并求出最小面积.
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
面积、体积最大问题