- 集合与常用逻辑用语
- 函数与导数
- 导数在函数中的其他应用
- + 利用导数解决实际应用问题
- 利润最大问题
- 面积、体积最大问题
- 成本最小问题
- 用料最省问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
时下,网校教学越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量
(单位:千套)与销售价格
(单位:元/套)满足的关系式
,其中
,
为常数.已知销售价格为4元/套时,每日可售出套题21千套.
(1)求
的值;
(2)假设网校的员工工资,办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格
的值,使网校每日销售套题所获得的利润最大.(保留1位小数)





(1)求

(2)假设网校的员工工资,办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格

为方便游客出行,某旅游点有50辆自行车供租赁使用。根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,每超1元,租不出的自行车就增加3辆。若每天管理自行车的总花费是115元,则当日租金为______元时,一日的净收入最大.
(2006年福建卷)统计表明,某种型号的汽车在匀速行驶中每小时的耗油量
(升)关于行驶速度
(千米/小时)的函数解析式可以表示为:
已知甲、乙两地相距100千米。
(I)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(II)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?



(I)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(II)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
某化工厂拟建一个下部为圆柱,上部为半球的容器(如图圆柱高为
,半径为
,不计厚度,单位:米),按计划容积为
立方米,且
,假设建造费用仅与表面积有关(圆柱底部不计 ),已知圆柱部分每平方米的费用为
千元,半球部分每平方米的费用为
千元,设该容器的建造费用为
千元.

(1)求
关于
的函数关系,并求其定义域;
(2)求建造费用最小时的
.








(1)求


(2)求建造费用最小时的

如图,在海岸线由抛物线
和线段
组成的小岛上建立一个矩形的直升机降落场,要求矩形降落场的边
与小岛海岸线
重合,点
,
在抛物线
上,其中直线
是抛物线的对称轴,
米,海岸线
米,求降落场面积最大值及此时降落场的边长.











某地方政府要将一块如图所示的直角梯形ABCD空地改建为健身娱乐广场.已知AD//BC,
百米,
百米,广场入口P在AB上,且
,根据规划,过点P铺设两条相互垂直的笔直小路PM,PN(小路的宽度不计),点M,N分别在边AD,BC上(包含端点),
区域拟建为跳舞健身广场,
区域拟建为儿童乐园,其它区域铺设绿化草坪,设
.
(1)求绿化草坪面积的最大值;
(2)现拟将两条小路PNM,PN进行不同风格的美化,PM小路的美化费用为每百米1万元,PN小路的美化费用为每百米2万元,试确定M,N的位置,使得小路PM,PN的美化总费用最低,并求出最小费用.






(1)求绿化草坪面积的最大值;
(2)现拟将两条小路PNM,PN进行不同风格的美化,PM小路的美化费用为每百米1万元,PN小路的美化费用为每百米2万元,试确定M,N的位置,使得小路PM,PN的美化总费用最低,并求出最小费用.
