- 集合与常用逻辑用语
- 函数与导数
- + 导数在函数中的其他应用
- 利用导数证明不等式
- 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 利用导数解决实际应用问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
(1)若函数
的图象在原点处的切线
与函数
的图象相切,求实数k的值;
(2)若对于
,总存在
,且
满足
,其中e为自然对数的底数,求实数k的取值范围.

(1)若函数



(2)若对于




已知函数f(x)=(ax-a+2)·ex(其中a∈R).
(1)求f(x)在[0,2]上的最大值;
(2)若函数g(x)=a2x2-13ax-30,求a所能取到的最大正整数,使对任意x>0,都有2f′(x)>g(x)恒成立.
(1)求f(x)在[0,2]上的最大值;
(2)若函数g(x)=a2x2-13ax-30,求a所能取到的最大正整数,使对任意x>0,都有2f′(x)>g(x)恒成立.