- 集合与常用逻辑用语
- 函数与导数
- 函数最值与极值的关系辨析
- 由导数求函数的最值
- 已知函数最值求参数
- + 函数单调性、极值与最值的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数f(x)=aln x+
(a>0).
(1)求函数f(x)的极值;
(2)若对任意的x>0,恒有ax(2-ln x)≤1,求实数a的取值范围;
(3)是否存在实数a,使得函数f(x)在[1,e]上的最小值为0?若存在,试求出a的值;若不存在,请说明理由.

(1)求函数f(x)的极值;
(2)若对任意的x>0,恒有ax(2-ln x)≤1,求实数a的取值范围;
(3)是否存在实数a,使得函数f(x)在[1,e]上的最小值为0?若存在,试求出a的值;若不存在,请说明理由.
设f(x),g(x)是定义在R上的恒大于0的可导函数,且f′(x)g(x)-f(x)g′(x)<0,则当a<x<b时有( )
A.f(x)g(x)>f(b)g(b) | B.f(x)g(a)>f(a)g(x) |
C.f(x)g(b) > f(b) g(x) | D.f(x) g(x)>f(a)g (a) |
将函数
的图象的纵坐标不变,横坐标缩短为原来的
,得到函数
的图象.已知函数
.
(1)若函数
在区间
上的最大值为
,求
的值;
(2)设函数
,证明:对任意
,都存在
,使得
在
上恒成立.




(1)若函数




(2)设函数




