- 集合与常用逻辑用语
- 函数与导数
- 函数最值与极值的关系辨析
- 由导数求函数的最值
- 已知函数最值求参数
- + 函数单调性、极值与最值的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设函数f(x)=ax3+bx2+cx+d(a、b、c、d∈R)满足:∀x∈R都有f(x)+f(﹣x)=0,且x=1时,f(x)取极小值
.
(1)f(x)的解析式;
(2)当x∈[﹣1,1]时,证明:函数图象上任意两点处的切线不可能互相垂直:
(3)设F(x)=|xf(x)|,证明:
时,
.

(1)f(x)的解析式;
(2)当x∈[﹣1,1]时,证明:函数图象上任意两点处的切线不可能互相垂直:
(3)设F(x)=|xf(x)|,证明:


若函数
对任意
,都有
,则称函数
是“以
为界的类斜率函数”.
(1)试判断函数
是否为“以
为界的类斜率函数”;
(2)若实数
,且函数
是“以
为界的类斜率函数”,求
的取值范围.





(1)试判断函数


(2)若实数



