- 集合与常用逻辑用语
- 函数与导数
- 函数最值与极值的关系辨析
- + 由导数求函数的最值
- 已知函数最值求参数
- 函数单调性、极值与最值的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某校在圆心角为直角,半径为
的扇形区域内进行野外生存训练.如图所示,在相距
的
,
两个位置分别为300,100名学生,在道路
上设置集合地点
,要求所有学生沿最短路径到
点集合,记所有学生进行的总路程为
.

(1)设
,写出
关于
的函数表达式;
(2)当
最小时,集合地点
离点
多远?









(1)设



(2)当



已知函数
.
(1)求函数y=f(x)的单调区间;
(2)若对于∀x∈(0,+∞)都有
成立,试求m的取值范围;
(3)记g(x)=f(x)+x﹣n﹣3.当m=1时,函数g(x)在区间[e﹣1,e]上有两个零点,求实数n的取值范围.

(1)求函数y=f(x)的单调区间;
(2)若对于∀x∈(0,+∞)都有

(3)记g(x)=f(x)+x﹣n﹣3.当m=1时,函数g(x)在区间[e﹣1,e]上有两个零点,求实数n的取值范围.
己知函数
.
(1)试讨论f(x)的单调性;
(2)若函数
有且只有三个不同的零点,分别记为x1,x2,x3,设x1<x2<x3,且
的最大值是e2,求x1x3的最大值.

(1)试讨论f(x)的单调性;
(2)若函数

