- 集合与常用逻辑用语
- 函数与导数
- 函数最值与极值的关系辨析
- + 由导数求函数的最值
- 已知函数最值求参数
- 函数单调性、极值与最值的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
的图像过坐标原点O,且在点
处的切线的斜率是-5.
(1)求实数b、c的值;
(2)求f(x)在区间[-1,2]上的最大值;
(3)对任意给定的正实数a,曲线y=f(x)上是否存在两点P、Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?请说明理由.


(1)求实数b、c的值;
(2)求f(x)在区间[-1,2]上的最大值;
(3)对任意给定的正实数a,曲线y=f(x)上是否存在两点P、Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?请说明理由.
已知函数f(x)=2ax3+bx2﹣6x在x=±1处取得极值
(1)讨论f(1)和f(﹣1)是函数f(x)的极大值还是极小值;
(2)试求函数f(x)在x=﹣2处的切线方程;
(3)试求函数f(x)在区间[﹣3,2]上的最值.
(1)讨论f(1)和f(﹣1)是函数f(x)的极大值还是极小值;
(2)试求函数f(x)在x=﹣2处的切线方程;
(3)试求函数f(x)在区间[﹣3,2]上的最值.
函数f(x)=x3+ax2+bx+c,曲线y=f(x)上点P(1,f(1))处的切线方程为y=3x+1
(1)若y=f(x)在x=﹣2时有极值,求函数y=f(x)在[﹣3,1]上的最大值;
(2)若函数y=f(x)在区间[﹣2,1]上单调递增,求b的取值范围.
(1)若y=f(x)在x=﹣2时有极值,求函数y=f(x)在[﹣3,1]上的最大值;
(2)若函数y=f(x)在区间[﹣2,1]上单调递增,求b的取值范围.
已知函数
(
为实数,且
),在区间
上最大值为
,最小值为
.
(1)求
的解析式;
(2)若函数
在区间
上为减函数,求实数
的取值范围;
(3)过点
作函数
图象的切线,求切线方程.






(1)求

(2)若函数



(3)过点


设函数f(x)=(x﹣a)2lnx,a∈R,e为自然对数的底数,e=2.7182…
(1)如果x=e为函数y=f(x)的极大值点,求a的值;
(2)如果函数f(x)在x=e处的切线与坐标轴围成的三角形的面积等于2e3,求a的值;
(3)在(2)的条件下,当x∈[e,e2]时,求f(x)的最大值和最小值.
(1)如果x=e为函数y=f(x)的极大值点,求a的值;
(2)如果函数f(x)在x=e处的切线与坐标轴围成的三角形的面积等于2e3,求a的值;
(3)在(2)的条件下,当x∈[e,e2]时,求f(x)的最大值和最小值.
已知m,t∈R,函数f (x) = (x - t)3+m.
(I)当t =1时,
(i)若f (1) =1,求函数f (x)的单调区间;
(ii)若关于x的不等式f (x)≥x3—1在区间[1,2]上有解,求m的取值范围;
(Ⅱ)已知曲线y= f (x)在其图象上的两点A(x1,f (x1)),B(x2,f (x2)))( x1≠x2)处的切线分别为l1、l2.若直线l1与l2平行,试探究点A与点B的关系,并证明你的结论.
(I)当t =1时,
(i)若f (1) =1,求函数f (x)的单调区间;
(ii)若关于x的不等式f (x)≥x3—1在区间[1,2]上有解,求m的取值范围;
(Ⅱ)已知曲线y= f (x)在其图象上的两点A(x1,f (x1)),B(x2,f (x2)))( x1≠x2)处的切线分别为l1、l2.若直线l1与l2平行,试探究点A与点B的关系,并证明你的结论.