- 集合与常用逻辑用语
- 函数与导数
- 函数最值与极值的关系辨析
- + 由导数求函数的最值
- 已知函数最值求参数
- 函数单调性、极值与最值的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
(1)若曲线
在
处的切线与直线
互相垂直,求
的值;
(2)若
,求
在
(
为自然对数的底数)上的最大值;
(3)对任意给定的正实数
,曲线
上是否存在两点
,使得
是以
为直角顶点的直角三角形,且此三角形斜边中点在
轴上?

(1)若曲线




(2)若




(3)对任意给定的正实数






已知函数f(x)=
和图象过坐标原点O,且在点(-1,f(-1))处的切线的斜率是-5.
(1)求实数b,c的值;
(2)求函数f(x)在区间[-1,1]上的最小值;
(3)若函数y=f(x)图象上存在两点P,Q,使得对任意给定的正实数a都满足△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上,求点P的横坐标的取值范围.

(1)求实数b,c的值;
(2)求函数f(x)在区间[-1,1]上的最小值;
(3)若函数y=f(x)图象上存在两点P,Q,使得对任意给定的正实数a都满足△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上,求点P的横坐标的取值范围.
设函数
,其中
,
为正整数,
,
,
均为常数,曲线
在
处的切线方程为
.
(1)求
,
,
的值;
(2)求函数
的最大值;
(3)证明:对任意的
都有
.(
为自然对数的底)










(1)求



(2)求函数

(3)证明:对任意的



给出下列四个命题:
①
是增函数,无极值.
②
在
上没有最大值
③由曲线
所围成图形的面积是
④函数
存在与直线
垂直的切线,则实数
的取值范围是
其中正确命题的个数为()
①

②


③由曲线


④函数




其中正确命题的个数为()
A.1 | B.2 | C.3 | D.4 |