- 集合与常用逻辑用语
- 函数与导数
- 利用导数研究函数的单调性
- + 利用导数研究函数的极值
- 函数极值的辨析
- 求已知函数的极值
- 根据极值求参数
- 函数(导函数)图象与极值的关系
- 利用导数研究函数的最值
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
(
为常数)有两个不同的极值点.
(1)求实数
的取值范围;
(2)记
的两个不同的极值点分别为
,若不等式
恒成立,求实数
的取值范围.


(1)求实数

(2)记




已知函数
(1)若
,且
在
上单调递增,求实数
的取值范围
(2)是否存在实数
,使得函数
在
上的最小值为
?若存在,求出实数
的值;若不存在,请说明理由.

(1)若




(2)是否存在实数





知函数f(x)=ax2﹣2x+lnx(a≠0,a∈R).
(1)判断函数 f (x)的单调性;
(2)若函数 f (x)有两个极值点x1,x2,求证:f(x1)+f(x2)<﹣3.
(1)判断函数 f (x)的单调性;
(2)若函数 f (x)有两个极值点x1,x2,求证:f(x1)+f(x2)<﹣3.