- 集合与常用逻辑用语
- 函数与导数
- + 利用函数单调性求最值
- 根据函数的最值求参数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如果函数
在其定义域内存在实数
,使得
(
为常数)成立,则称函数
为“对
的可拆分函数”.若
为“对2的可拆分函数”,则非零实数
的最大值是______.








已知函数
是定义在
上的偶函数,且当
时,
.现已画出函数
在
轴左侧的图像,如图所示,并根据图像

(1)写出函数
的增区间;
(2)写出函数
的解析式;
(3)若函数
,求函数
的最小值。







(1)写出函数

(2)写出函数

(3)若函数


已知函数
在区间
上的最大值为
,最小值为
,记
;
(1)求实数
、
的值;
(2)若不等式
对任意
恒成立,求实数
的范围;
(3)对于定义在
上的函数
,设
,
,用任意的
将
划分为
个小区间,其中
,若存在一个常数
,使得
恒成立,则称函数
为
上的有界变差函数;
①试证明函数
是在
上的有界变差函数,并求出
的最小值;
②写出
是在
上的有界变差函数的一个充分条件,使上述结论成为其特例;(不要求证明)







(1)求实数


(2)若不等式



(3)对于定义在














①试证明函数



②写出


设a>0,f(x)=
+
(e为常数,e=2.71828…)在R上满足f(x)=f(-x).
(1)求a的值;
(2)证明:f(x)在(0,+∞)上是增函数;
(3)求函数f(x)在区间[1,2]上的最大值与最小值.


(1)求a的值;
(2)证明:f(x)在(0,+∞)上是增函数;
(3)求函数f(x)在区间[1,2]上的最大值与最小值.
设函数
在
上有定义,实数
和
满足
.若
在区间
上不存在最小值,则称
在区间
上具有性质P.
(1)当
,且
在区间
上具有性质P,求常数C的取值范围;
(2)已知
,且当
时,
,判别
在区间
上是否具有性质P;
(3)若对于满足
的任意实数
和
,
在区间
上具有性质P,且对于任意
,当
时,有:
,证明:当
时,
.









(1)当



(2)已知





(3)若对于满足









