- 集合与常用逻辑用语
- 函数与导数
- + 利用函数单调性求最值
- 根据函数的最值求参数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知f(x)是定义在[-1,1]上的奇函数,当x∈[-1,0]时,函数的解析式为f(x)=
(a∈R).
(1)试求a的值;
(2)写出f(x)在[0,1]上的解析式;
(3)求f(x)在[0,1]上的最大值.

(1)试求a的值;
(2)写出f(x)在[0,1]上的解析式;
(3)求f(x)在[0,1]上的最大值.
函数
(1)当
时,求函数
的定义域;
(2)若
,请判定
的奇偶性;
(3)是否存在实数
,使函数
在
递增,并且最大值为1,若存在,求出
的值;若不存在,请说明理由.

(1)当


(2)若



(3)是否存在实数




已知函数
(其中a为常数).
(1)当a=1时,求f(x)在
上的值域;
(2)若当x∈[0,1]时,不等式
恒成立,求实数a的取值范围;
(3)设
,是否存在正数a,使得对于区间
上的任意三个实数m,n,p,都存在以f(g(m)),f(g(n)),f(g(p))为边长的三角形?若存在,试求出这样的a的取值范围;若不存在,请说明理由.

(1)当a=1时,求f(x)在

(2)若当x∈[0,1]时,不等式

(3)设


对于函数
,若存在区间
,使得
,则称函数
为“可等域函数”,区间
为函数
的一个“可等域区间”.给出下列4个函数:
①
;②
; ③
; ④
.
其中存在唯一“可等域区间”的“可等域函数”为( )






①




其中存在唯一“可等域区间”的“可等域函数”为( )
A.①②③ | B.②③ | C.①③ | D.②③④ |
如图所示,将一块直角三角形木板
置于平面直角坐标系中,已知
,点
是三角形木板内一点,现因三角形木板中阴影部分受到损坏,要把损坏部分锯掉,可用经过点
的任一直线
将三角形木板锯成
.设直线
的斜率为
.

(Ⅰ)求点
的坐标及直线
的斜率
的范围;
(Ⅱ)令
的面积为
,试求出
的取值范围;
(Ⅲ)令(Ⅱ)中
的取值范围为集合
,若
对
恒成立,求
的取值范围.









(Ⅰ)求点



(Ⅱ)令



(Ⅲ)令(Ⅱ)中





对于一个具有正南正北、正东正西方向规则布局的城镇街道,从一点到另一点的距离是在南北方向上行进的距离加上在东西方向上行进的距离,这种距离即“曼哈顿距离”,也叫“出租车距离”.对于平面直角坐标系中的点
和
,两点间的“曼哈顿距离”
.

(1)如图,若
为坐标原点,
,
两点坐标分别为
和
,求
,
,
;
(2)若点
满足
,试在图中画出点
的轨迹,并求该轨迹所围成图形的面积;
(3)已知函数
,试在
图象上找一点
,使得
最小,并求出此时点
的坐标.




(1)如图,若








(2)若点



(3)已知函数




