- 集合与常用逻辑用语
- 函数与导数
- + 利用函数单调性求最值
- 根据函数的最值求参数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
有次水下考古活动中,潜水员需潜入水深为30米的水底进行作业,其用氧量包含以下三个方面:①下潜时,平均速度为每分钟
米,每分钟的用氧量为
升;②水底作业需要10分钟,每分钟的用氧量为0.3升;③返回水面时,速度为每分钟
米,每分钟用氧量为0.2升;设潜水员在此次考古活动中的总用氧量为
升;
(1)将
表示为
的函数;
(2)若
,求总用氧量
的取值范围.




(1)将


(2)若


不等式
有多种解法,其中有一种方法如下:在同一直角坐标系
中作出
和
的图像,然后进行求解,请类比求解以下问题:设
,若对任意
,都有
,则
________

中作出






已知函数
(
是非零实常数)满足
且方程
有且仅有一个实数解.
(1)求
的值
(2)当
时,不等式
恒成立,求实数
的取值范围
(3)在直角坐标系中,求定点
到函数
图像上的任意一点
的距离
的最小值,并求取得最小值时
的值




(1)求

(2)当



(3)在直角坐标系中,求定点





已知函数
,现给出如下结论:①
是奇函数;②
是周期函数;③
在区间
上有三个零点;④
的最大值为2.其中正确结论的个数为( )






A.1 | B.2 | C.3 | D.4 |