- 集合与常用逻辑用语
- 函数与导数
- + 函数的单调性
- 定义法判断函数的单调性
- 求函数的单调区间
- 函数单调性的应用
- 根据图像判断函数单调性
- 复合函数的单调性
- 函数的最值
- 函数的奇偶性
- 函数的周期性
- 函数的对称性
- 函数的图象
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
的定义域是
,考察下列四个结论:
①若
,则
是偶函数
②若
,则
在区间
上不是减函数
③若
,则方程
在区间
内至少有一个实根;
④若
,
,则
是奇函数或偶函数
其中正确的是_________.


①若


②若



③若



④若



其中正确的是_________.
函数
满足:①定义域是
; ②当
时,
;③对任意
,总有
(1)求出
的值;
(2)判断函数
的单调性,并用单调性的定义证明你的结论;
(3)写出一个满足上述条件的具体函数.






(1)求出

(2)判断函数

(3)写出一个满足上述条件的具体函数.
若y=f(x)在(﹣3,0)上是减函数,又y=f(x﹣3)的图象的一条对称轴为y轴,则f(
)、
、f(﹣5)的大小关系是__(请用“
”把它们连接起来)


