- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- + 正方形的判定与性质综合
- 根据正方形的性质与判定求角度
- 根据正方形的性质与判定求线段长
- 根据正方形的性质与判定求面积
- 根据正方形的性质与判定证明
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在矩形
中,
,
,
.
分别是线段
,
上的点,连接
,使四边形
为正方形,若点
是
上的动点,连接
,将矩形沿
折叠使得点
落在正方形
的对角线所在的直线上,对应点为
,则线段
的长为________ .


















如图,已知正方形ABCD中,∠MAN=45°,连接BD与AM,AN分别交于E,F点,则下列结论正确的有_____.
①MN=BM+DN
②△CMN的周长等于正方形ABCD的边长的两倍;
③EF2=BE2+DF2;
④点A到MN的距离等于正方形的边长
⑤△AEN、△AFM都为等腰直角三角形.
⑥S△AMN=2S△AEF
⑦S正方形ABCD:S△AMN=2AB:MN
⑧设AB=a,MN=b,则
≥2
﹣2.
①MN=BM+DN
②△CMN的周长等于正方形ABCD的边长的两倍;
③EF2=BE2+DF2;
④点A到MN的距离等于正方形的边长
⑤△AEN、△AFM都为等腰直角三角形.
⑥S△AMN=2S△AEF
⑦S正方形ABCD:S△AMN=2AB:MN
⑧设AB=a,MN=b,则



请阅读下列材料:
问题:如图,在正方形
和平行四边形
中,点
,
,
在同一条直线上,
是线段
的中点,连接
,
.
探究:当
与
的夹角为多少度时,平行四边形
是正方形?
小聪同学的思路是:首先可以说明四边形
是矩形;然后延长
交
于点
,构造全等三角形,经过推理可以探索出问题的答案.
请你参考小聪同学的思路,探究并解决这个问题.

(1)求证:四边形
是矩形;
(2)
与
的夹角为________度时,四边形
是正方形.
理由:
问题:如图,在正方形









探究:当



小聪同学的思路是:首先可以说明四边形




请你参考小聪同学的思路,探究并解决这个问题.

(1)求证:四边形

(2)



理由: