- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- + 菱形的判定与性质综合
- 根据菱形的性质与判定求角度
- 根据菱形的性质与判定求线段长
- 根据菱形的性质与判定求面积
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在菱形ABCD中,点P是BC的中点,仅用无刻度的直尺按要求画图. (保
留作图痕迹,不写作法)
(1)在图①中画出AD的中点H;
(2)在图②中的菱形对角线BD上,找两个点E、F,使BE=D
留作图痕迹,不写作法)
(1)在图①中画出AD的中点H;
(2)在图②中的菱形对角线BD上,找两个点E、F,使BE=D
A.![]() ![]() |
如图,在平行四边形ABCD中,M、N分别是边AD、BC边上的中点,且△ABM≌△DCM;E、F分别是线段BM、CM的中点.
(1)求证:平行四边形ABCD是矩形.
(2)求证:EF与MN互相垂直.
(1)求证:平行四边形ABCD是矩形.
(2)求证:EF与MN互相垂直.

如图,△ABC中,∠BAC=60°,∠B=45°,AB=2,点D是BC上的一个动点,点D关于AB,AC的对称点分别是点E,F,四边形AEGF是平行四边形,则四边形AEGF面积的最小值是( )


A.1 | B.![]() | C.![]() | D.![]() |
如图,在矩形ABCD中,点E为CD上一点,将△BCE沿BE翻折后点C恰好落在AD边上的点F处,将线段EF绕点F旋转,使点E落在BE上的点G处,连接CG.
(1)证明:四边形CEFG是菱形;
(2)若AB=8,BC=10,求四边形CEFG的面积;
(3)试探究当线段AB与BC满足什么数量关系时,BG=CG,请写出你的探究过程.
(1)证明:四边形CEFG是菱形;
(2)若AB=8,BC=10,求四边形CEFG的面积;
(3)试探究当线段AB与BC满足什么数量关系时,BG=CG,请写出你的探究过程.

如图,在菱形ABCD中,AC、BD相交于点O,E为AB的中点,且DE⊥AB,AC=6,则菱形ABCD的面积是( )


A.18 | B.18![]() | C.9![]() | D.6![]() |
如图所示,O为矩形ABCD对角线的交点,DE∥AC,CE∥B

A. (1)试判断四边形OCED的形状,并说明理由; (2)若AB=3,BC=4,求四边形OCED的周长. |

如图,矩形ABCD的对角线AC、BD相交于点O,∠AOB=120°,CE∥BD,DE∥AC,若AD=4,则四边形CODE的周长_____ .
