- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- + 菱形的判定与性质综合
- 根据菱形的性质与判定求角度
- 根据菱形的性质与判定求线段长
- 根据菱形的性质与判定求面积
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
已知:如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F.
(1)求证:四边形ABEF是菱形;
(2)若AE=6,BF=8,平行四边形ABCD的面积是36,求AD的长.
(1)求证:四边形ABEF是菱形;
(2)若AE=6,BF=8,平行四边形ABCD的面积是36,求AD的长.

如图,在△ABC中,AB=AC,点D在边AB上,DE∥BC,与边AC交于点E,将△ADE沿着DE所在的直线对折,得到△FDE,连结BF,记△ADE,△BDF的面积分别为S1,S2,若BD>2AD,则下列说法错误的是( )


A.2S2>3S1 | B.2S2>5S1 | C.3S2>7S1 | D.3S2>8S1 |
如图,在平行四边形ABCD中,DB=DA,∠ADB的角平分线与AB相交于点F,与CB的延长线相交于点E连接AE.
(1)求证:四边形AEBD是菱形.
(2)若四边形ABCD是菱形,DC=10,则菱形AEBD的面积是 .(直接填空,不必证明)
(1)求证:四边形AEBD是菱形.
(2)若四边形ABCD是菱形,DC=10,则菱形AEBD的面积是 .(直接填空,不必证明)

如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于
BF的相同长度为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF.若四边形ABEF的周长为16,∠C=60°,则四边形ABEF的面积是___.


如图①,在
中,∠C=90°,AC=3,BC=4.求作菱形DEFG,使点D在边AC上,点E、F在边AB上,点G在边BC上.

(1)证明小明所作的四边形DEFG是菱形;
(2)小明进一步探索,发现可作出的菱形的个数随着点D的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围.


(1)证明小明所作的四边形DEFG是菱形;
(2)小明进一步探索,发现可作出的菱形的个数随着点D的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围.
如图,在▱ABCD中,BC=2AB,E,F分别是BC,AD的中点,AE,BF交于点O,连接EF,O

A. (1)求证:四边形ABEF是菱形;(2)若BC=8,∠ABC=60°,求OC的长. |

如图,四边形
为菱形,
是两条对角线的交点,过点
的三条直线将菱形分成阴影和空白两部分.当菱形的面积为60时,阴影部分的面积是________ .



