- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形的性质
- 直角三角形斜边上的中线
- + 矩形的判定与性质综合
- 根据矩形的性质与判定求角度
- 根据矩形的性质与判定求线段长
- 根据矩形的性质与判定求面积
- 菱形的性质
- 菱形的判定
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在矩形ABCD中对角线AC与BD相交于点O,CE⊥BD,垂足为点E,CE=5,且EO=2DE,则ED的长为( )


A.![]() | B.2![]() | C.1 | D.2 |
如图,点P是矩形ABCD的对角AC上一点,过点P作
分别交AB,CD与E、F,连结PB、PD.若AE=2,PF=8,则图中阴影部分的面积为( )



A.10 | B.16 | C.18 | D.20 |
如图,将长方形ABCD沿着对角线BD折叠,使点C落在C'处,BC'交AD于点E.

(1)试判断△BDE的形状,并说明理由;
(2)若AB=6,AD=8,求△BDE的面积.

(1)试判断△BDE的形状,并说明理由;
(2)若AB=6,AD=8,求△BDE的面积.
如图,点E、F、G、H分别在矩形ABCD的边AD、AB、BC、CD上,且AF=CH,BG=DE,若AB=2,BC=4,则四边形EFGH周长最小值为_____.

如图1,长方形OABC的边OA、OC分别在x轴、y轴上,B点坐标是(8,4),将△AOC沿对角线AC翻折得△ADC,AD与BC相交于点E.

(1)求证:△CDE≌△ABE
(2)求E点坐标;
(3)如图2,动点P从点A出发,沿着折线A→B→C→O运动(到点O停止),是否存在点P,使得△POA的面积等于△ACE的面积,若存在,直接写出点P坐标,若不存在,说明理由.

(1)求证:△CDE≌△ABE
(2)求E点坐标;
(3)如图2,动点P从点A出发,沿着折线A→B→C→O运动(到点O停止),是否存在点P,使得△POA的面积等于△ACE的面积,若存在,直接写出点P坐标,若不存在,说明理由.
如图所示,矩形ABCD的面积为10cm2,它的两条对角线交于点O1,以AB、AO1为邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交于点O2;同样以AB、AO2为邻边作平行四边形ABC2O2,……依此类推,则平行四边形ABC5O5的面积为( )


A.![]() | B.![]() |
C.![]() | D.![]() |
如图:已知长方形ABCD的边AD长为a,边AB长为b,正方形CEFG的边长为c,点G在边CD上.

(1)求△BDG的面积;
(2)求△BDF的面积;
(3)以点G为圆心,以c的长度为半径画弧,求图中阴影部分的面积.(注:以上各题均用字母a、b、c表示.)

(1)求△BDG的面积;
(2)求△BDF的面积;
(3)以点G为圆心,以c的长度为半径画弧,求图中阴影部分的面积.(注:以上各题均用字母a、b、c表示.)
如图,矩形纸片ABCD中,点E是AD的中点,且AE=1,BE的垂直平分线MN恰好过点C,则矩形的一边AB的长度为( )


A.1 | B.![]() | C.![]() | D.2 |