- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形的性质
- 直角三角形斜边上的中线
- + 矩形的判定与性质综合
- 根据矩形的性质与判定求角度
- 根据矩形的性质与判定求线段长
- 根据矩形的性质与判定求面积
- 菱形的性质
- 菱形的判定
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,矩形ABCD中,AB=m,AD=n.
(1)若m=4,矩形ABCD的边CD上是否存在点P,使得∠APB=90°?写出点P存在或不存在的可能情况和此时n满足的条件.
(2)矩形ABCD的边上是否存在点P,使得∠APB=60°?写出点P存在或不存在的可能情况和此时m、n满足的条件.

(1)若m=4,矩形ABCD的边CD上是否存在点P,使得∠APB=90°?写出点P存在或不存在的可能情况和此时n满足的条件.
(2)矩形ABCD的边上是否存在点P,使得∠APB=60°?写出点P存在或不存在的可能情况和此时m、n满足的条件.


如图,在矩形ABCD中,对角线AC与BD相交于点O,CE⊥BD,垂足为点E,CE=5,且EO=2DE,则ED的长为( )


A.![]() | B.2![]() | C.2 | D.![]() |
已知BC=5,AB=1,AB⊥BC,射线CM⊥BC,动点P在线段BC上(不与点B,C重合),过点P作DP⊥AP交射线CM于点D,连接AD.
(1)如图1,若BP=4,判断△ADP的形状,并加以证明.
(2)如图2,若BP=1,作点C关于直线DP的对称点C′,连接AC′.
①依题意补全图2;
②请直接写出线段AC′的长度.
(1)如图1,若BP=4,判断△ADP的形状,并加以证明.
(2)如图2,若BP=1,作点C关于直线DP的对称点C′,连接AC′.
①依题意补全图2;
②请直接写出线段AC′的长度.

如图,在长方形
中,
=4,
=8,点
是
边上一点,且
,点
是边
上一动点,连接
,
,则下列结论:①
;②当
时,
平分
;③△
周长的最小值为15 ;④当
时,
平分
.其中正确的个数有( )




















A.4个 | B.3个 | C.2个 | D.1个 |
如图,在矩形ABCD中,∠ABC的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=8,DF=3FC,则BC=__________.

如图,四边形ABCD是矩形,E是CD上一点,连接AE,取AE的中点G,连接DG并延长交CB延长线于点F,连接AF,∠AFC=3∠EAD,若DG=4,BF=1,则AB的长为_____.

如图,在平面直角坐标系中,点
,
,且
,
满足
,点
为
上一个动点(不与
,
)重合),连接
.


图1 图2
(1)直接写出
___________,
___________;
(2)如图1,过点
作
的垂线交过点
平行于
轴的直线于点
,若点
,
求点
的坐标;
(3)如图2,以
为斜边在
右侧作等腰
,
.连接
,当点
从
向
运动过程中,
的面积是否发生变化,请判断并说明理由.












图1 图2
(1)直接写出


(2)如图1,过点






求点

(3)如图2,以









如1,在矩形ABCD中,AB=6,AD=10,E为AD上一点且AE=6,连接BE.
(1)将△ABE绕点B逆时针旋转90°至△ABF(如图2),且A、B、C三点共线,再将△ABF沿射线BC方向平移,平移速度为每秒1个单位长度,平移时间为t(s)(t≥0),当点A与点C重合时运动停止.
①在平移过程中,当点F与点E重合时,t= (s).
②在平移过程中,△ABF与四边形BCDE重叠部分面积记为S,求s与t的关系式.
(2)如图3,点M为直线BE上一点,直线BC上有一个动点P,连接DM、PM、DP,且EM=5
,试问:是否存在点P,使得△DMP为等腰三角形?若存在,请直接写出此时线段BP的长;若不存在,请说明理由.
(1)将△ABE绕点B逆时针旋转90°至△ABF(如图2),且A、B、C三点共线,再将△ABF沿射线BC方向平移,平移速度为每秒1个单位长度,平移时间为t(s)(t≥0),当点A与点C重合时运动停止.
①在平移过程中,当点F与点E重合时,t= (s).
②在平移过程中,△ABF与四边形BCDE重叠部分面积记为S,求s与t的关系式.
(2)如图3,点M为直线BE上一点,直线BC上有一个动点P,连接DM、PM、DP,且EM=5

