- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形的性质
- 直角三角形斜边上的中线
- + 矩形的判定与性质综合
- 根据矩形的性质与判定求角度
- 根据矩形的性质与判定求线段长
- 根据矩形的性质与判定求面积
- 菱形的性质
- 菱形的判定
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,A,B,C,D为矩形ABCD的四个顶点,AB=25 cm,AD=8 cm,动点P,Q分别从点A,C同时出发,点P以3 cm/s的速度向点B移动,运动到点B为止,点Q以2 cm/s的速度向点D移动.
(1)P,Q两点,从出发开始到第几秒时,PQ∥AD?
(2)试问:P,Q两点,从出发开始到第几秒时,四边形PBCQ的面积为84 cm2?
(1)P,Q两点,从出发开始到第几秒时,PQ∥AD?
(2)试问:P,Q两点,从出发开始到第几秒时,四边形PBCQ的面积为84 cm2?

下列命题错误的是( )
A.平行四边形的对角线互相平分 | B.矩形的对角线相等 |
C.对角线互相垂直平分的四边形是菱形 | D.对角线相等的四边形是矩形 |
如图,在矩形ABCD中,AD=
AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:
①∠AED=∠CED;②OE=OD;③BH=HF;④BC-CF=2HE;⑤AB=HF,其中正确的有( )


①∠AED=∠CED;②OE=OD;③BH=HF;④BC-CF=2HE;⑤AB=HF,其中正确的有( )

A.①②③④⑤ | B.①②③④ | C.①③④⑤ | D.①②③⑤ |
(本题满分9分)小明一直对四边形很感兴趣,在矩形ABCD中,E是AC上任意一点,连接DE,作DE⊥EF,交AB于点F.请你跟着他一起解决下列问题:
(1)如图①,若AB=BC,则DE,EF有什么数量关系?请给出证明.
(2)如图②,若∠CAB=30°,则DE,EF又有什么数量关系?请给出证明.
(3)由(1)、(2)这两种特殊情况,小明提出问题:如果在矩形ABCD中,BC=mAB,那DE,EF有什么数量关系?请给出证明.
(1)如图①,若AB=BC,则DE,EF有什么数量关系?请给出证明.
(2)如图②,若∠CAB=30°,则DE,EF又有什么数量关系?请给出证明.
(3)由(1)、(2)这两种特殊情况,小明提出问题:如果在矩形ABCD中,BC=mAB,那DE,EF有什么数量关系?请给出证明.

将图1中的矩形ABCD沿对角线AC剪开,再把△ABC沿着AD方向平移,得到图2中的△A′BC′
【小题1】写出图2中的两对全等的三角形(不能添加辅助线和字母,△C′BA′
△ADC除外);
【小题2】选择一对加以证明.
【小题1】写出图2中的两对全等的三角形(不能添加辅助线和字母,△C′BA′

【小题2】选择一对加以证明.

我们知道,矩形是特殊的平行四边形,所以矩形除了具备平行四边形的一切性质还有其特殊的性质;同样,黄金矩形是特殊的矩形,因此黄金矩形有与一般矩形不一样的知识.
已知平行四边形ABCD,∠A=60°,AB=2a,AD=a.

(1)把所给的平行四边形ABCD用两种方式分割并作说明(见题答卡表格里的示例);
要求:用直线段分割,分割成的图形是学习过的特殊图形且不超出四个.
(2)图中关于边、角和对角线会有若干关系或问题.现在请计算两条对角线的长度.
要求:计算对角线BD长的过程中要有必要的论证;直接写出对角线AC的长.
解:在表格中作答
已知平行四边形ABCD,∠A=60°,AB=2a,AD=a.

(1)把所给的平行四边形ABCD用两种方式分割并作说明(见题答卡表格里的示例);
要求:用直线段分割,分割成的图形是学习过的特殊图形且不超出四个.
(2)图中关于边、角和对角线会有若干关系或问题.现在请计算两条对角线的长度.
要求:计算对角线BD长的过程中要有必要的论证;直接写出对角线AC的长.
解:在表格中作答
分割图形 | 分割或图形说明 |
示例![]() | 示例①分割成两个菱形. ②两个菱形的边长都为a,锐角都为60°. |
![]() | |
![]() | |