- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
已知△ABC是等边三角形,点D,E分别为边AB,AC上的点,且有AE=DB,连接DE,DC.

(1)如图1,若AB=6,∠DEC=90°,求△DEC的面积.
(2)M为DE中点,当D,E分别为AB、AC的中点时,判定CD,AM的数量关系并说明理由.
(3)如图2,M为DE中点,当D,E分别为AB,AC上的动点时,判定CD,AM的数量关系并说明理由.

(1)如图1,若AB=6,∠DEC=90°,求△DEC的面积.
(2)M为DE中点,当D,E分别为AB、AC的中点时,判定CD,AM的数量关系并说明理由.
(3)如图2,M为DE中点,当D,E分别为AB,AC上的动点时,判定CD,AM的数量关系并说明理由.
如图,在矩形ABCD中,过BD的中点O做EF⊥BD,分别与AB、CD交于点E、F.连接DE、BF.
(1)求证:四边形BEDF是菱形;
(2)若M是AD中点,联结OM与DE交于点N,AD=OM=4,则ON的长是多少?
(1)求证:四边形BEDF是菱形;
(2)若M是AD中点,联结OM与DE交于点N,AD=OM=4,则ON的长是多少?

如图,正方形ABCD中,AB=4,点E是BA延长线上一点,点M、N分别为边AB、BC上的点,且AM=BN=1,连接CM、ND,过点M作MF∥ND与∠EAD的平分线交于点F,连接CF分别与AD、ND交于点G、H,连接MH,则下列结论正确的有( )个
①MC⊥ND;②sin∠MFC=
;③(BM+DG)²=AM²+AG²;④S△HMF=

①MC⊥ND;②sin∠MFC=



A.1 | B.2 | C.3 | D.4 |
菱形
中,
,
,
为
上一个动点,
,连接
并延长交
延长线于点
.
(1)如图1,求证:
;
(2)当
为直角三角形时,求
的长;
(3)当
为
的中点,求
的最小值.










(1)如图1,求证:

(2)当


(3)当





如图,在
中,
,
是
的一条角平分线.点
、
、
分别在
、
、
上,且四边形
是正方形.

(1)求证:点
在
的平分线上;
(2)若
,
,且正方形
的面积为4,求
的面积.












(1)求证:点


(2)若




如图,在正方形ABCD中,点E,F分别在BC,CD上,AE=AF,AC与EF相交于点G,下列结论:①AC垂直平分EF;②BE+DF=EF;③当∠DAF=15°时,△AEF为等边三角形;④当∠EAF=60°时,S△ABE=
S△CEF,其中正确的是( )



A.①③ | B.②④ | C.①③④ | D.②③④ |
如图,在Rt△ABC中,∠BAC=90°,且BA=6,AC=8,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN的最小值为_____.
