- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,▱ABCD的对角线AC、BD相交于点O,AB⊥AC,AB=3,BC=5,点P从点A出发,沿AD以每秒1个单位的速度向终点D运动.连结PO并延长交BC于点Q.设点P的运动时间为t秒.
(1)求BQ的长,(用含t的代数式表示)
(2)当四边形ABQP是平行四边形时,求t的值
(3)当点O在线段AP的垂直平分线上时,直接写出t的值.
(1)求BQ的长,(用含t的代数式表示)
(2)当四边形ABQP是平行四边形时,求t的值
(3)当点O在线段AP的垂直平分线上时,直接写出t的值.

如图,在矩形ABCD中,AB=4,BC=5,E,F分别是线段CD和线段BA延长线上的动点,沿直线EF折叠使点D的对应点D′落在BC上,连接AD′,DD′,当△ADD′是以DD′为腰的等腰三角形时,DE的长为_____.

在
中,E,F分别是AB,DC上的点,且
,连接DE,BF,A


A.![]() (1)求证:四边形DEBF是平行四边形; (2)若AF平分 ![]() |
△ABC是等腰直角三角形,点E为线段AC上一点(E点不和A、C两点重合),连接BE并延长BE,在BE的延长线上找一点D,使AD⊥CD,点F为线段AD上一点(F点不和A、D两点重合),连接CF,交BD于点G
(1)如图1,若AB=
,CD=1,F是线段AD的中点,求CF;
(2)如图2,若点E是线段AC中点,CF⊥BD,求证:CF+DE=BE.
(1)如图1,若AB=

(2)如图2,若点E是线段AC中点,CF⊥BD,求证:CF+DE=BE.
