- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 用勾股定理解三角形
- + 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是长方形,点A、C、D的坐标分别为A(9,0)、C(0,4),D(5,0),点P从点O出发,以每秒1个单位长度的速度沿O→C→B→A运动,点P的运动时间为t秒.
(1)当t=5时, OP长为____________;
(2)当点P在BC边上时,OP+PD有最小值吗?如果有,请算出该最小值,如果没有,请说明理由;
(1)当t=5时, OP长为____________;
(2)当点P在BC边上时,OP+PD有最小值吗?如果有,请算出该最小值,如果没有,请说明理由;

如图,长方形OABC在平面直角坐标系内(0为坐标原点),点A在x轴上,点C在y轴上,点B的坐标分别为(-2,2
),点E是BC的中点,点H在OA上,且AH=
,过点H且平行于y轴的HG与EB交于点G,现将长方形折叠,使頂点C落在HG上的D点处,折痕为EF,点F为折痕与y轴的交点.
(1)求点D的坐标;
(2) 求折痕EF所在直线的函数表达式;
(3)若点P在直线AB上,当△PFD为等腰三角形时,试问满足条件的点P有几个?请求出点P的坐标,并写出解答过程.


(1)求点D的坐标;
(2) 求折痕EF所在直线的函数表达式;
(3)若点P在直线AB上,当△PFD为等腰三角形时,试问满足条件的点P有几个?请求出点P的坐标,并写出解答过程.

如图,直线
,点A1(0,1),过点A1作y轴的垂线交直线
于点B1,以原点O圆心,OB1长为半径画弧交y轴于点A2;再过点A2作y轴的垂线交直线
于点B2,以原点O为圆心,OB2长为半径画弧交y轴于点A3,…,按此做法进行下去,OA2017的长为( )





A.![]() | B.![]() | C.![]() | D.![]() |
如图,已知直线y=2x+2分别与x轴,y轴交于点A、B,已知点A1是点A关于y轴的对称点,作直线A1B,过点A1作x轴的垂线l1,交直线AB于点B1;点A2是点A关于直线l1的对称点,作直线A2B1,过点A2作x轴的垂线l2,交直线AB于B2;点A3是点A关于l2的对称点,作直线A3B2……继续这样操作下去,可作直线AnBn﹣1.(n为正整数,且n≥1)

(1)填空:
①A1(1,0),A2(3,0),A3( , ),An( , );
②B(0,2),B1(1,4),B2( , ),Bn﹣1( , );
(2)求线段AnBn﹣1的长.

(1)填空:
①A1(1,0),A2(3,0),A3( , ),An( , );
②B(0,2),B1(1,4),B2( , ),Bn﹣1( , );
(2)求线段AnBn﹣1的长.
(1)如图1,四边形
中,
,点
为
边的中点,连接
并延长交
的延长线于点
,求证:
.(
表示面积)
(2)如图2,在
中,过
边的中点
任意作直线
,交
边于点
,交
的延长线于点
,试比较
与
的面积,并说明理由.
(3)如图3,在平面直角坐标系中,已知一次函数
的图像过点
且分别于
轴正半轴,
轴正半轴交于点
、
,请问
的面积是否存在最小值?若存在,求出此时一次函数关系式;若不存在,请说明理由.









(2)如图2,在










(3)如图3,在平面直角坐标系中,已知一次函数








如图,直线
与x轴、y轴的交点为A,B,按以下步骤作图:①以点A为圆心,适当长度为半径作弧,分别交AB,x轴于点C,D;②分别以点C,D为圆心,大于
的长为半径作弧,两弧在∠OAB内交于点M;③作射线AM,交y轴于点E,则点E的坐标为( )




A.(0,![]() | B.(0,![]() | C.(0,![]() | D.(0,![]() |