- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- + 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,
,点
在边
上,
,点
为边
上一动点,连接
,
与
关于
所在直线对称,点
分别为
,
的中点,连接
并延长交
所在直线于点
,连接
.当
为直角三角形时,
的长为__________.




















如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥B

(1)试判断四边形OCED的形状,并说明理由;
(2)若∠DOC = 60°,BC = 6,求矩形ABCD的对角线长.
A. |

(1)试判断四边形OCED的形状,并说明理由;
(2)若∠DOC = 60°,BC = 6,求矩形ABCD的对角线长.
如图,四边形
中,
,
,
,
,
,动点
从点
出发以
的速度沿
的方向运动,动点
从点
出发以
的速度沿
方向运动,
,
两点同时出发,当
到达点
时停止运动,点
也随之停止,设运动的时间为
.

(1)求线段
的长;
(2)
为何值时,线段
将四边形
的面积分为
两部分.





















(1)求线段

(2)




如图,在长方形ABCD中,AB=8,AD=10,点E为BC上一点,将△ABE沿AE折叠,使点B落在长方形内点F处,且DF=6,则BE的长为______.

如图,折叠长方形纸片ABCD的一边AD,使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,则折痕AE的长为( )


A.![]() | B.![]() | C.12cm | D.13 cm |
如图,▱ABCD中,AE平分∠BAD交BC边于E,EF⊥AE交CD边于F,延长BA到点G,使AG=CF,连接GF,若BC=7,DF=3,AE=
,则GF的长为__________


实践与探究
在平面直角坐标系中,四边形AOBC是矩形,点
(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,
在平面直角坐标系中,四边形AOBC是矩形,点

A. (1)如图(1),当点D落在BC边上时,求点D的坐标; (2)如图(2),当点D落在线段BE上时,AD与BC交于点H. ①求证:ΔADB≌ΔAOB; ②求点H的坐标. ![]() ![]() |