- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:

①四边形CFHE是菱形;
②EC平分∠DCH;
③线段BF的取值范围为3≤BF≤4;
④当点H与点A重合时,EF=2
.
以上结论中,你认为正确的有 .(填序号)

①四边形CFHE是菱形;
②EC平分∠DCH;
③线段BF的取值范围为3≤BF≤4;
④当点H与点A重合时,EF=2

以上结论中,你认为正确的有 .(填序号)
如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接ED,则DE的长度是_____,B′D的最小值是_____.

如图,
、
、
、
是矩形的四个顶点,
,
,动点
从点
出发,以
的速度向点
运动,直到点
为止;动点
同时从点
出发,以
的速度向点
运动,当时间为__时,点
和点
之间的距离是
.



















如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG⊥ED交DE于点F,交CD于点G.
(1)若BC=4,求AG的长;
(2)连接BF,求证:AB=FB.
(1)若BC=4,求AG的长;
(2)连接BF,求证:AB=FB.

如图,在矩形ABCD中,AB=4,BC=2,点E是边BC的中点,P为AB上一点,连接PE,过点E作PE的垂线交射线AD于点Q,连接PQ,设AP的长为t.

(1)用含t的代数式表示AQ的长;
(2)若△PEQ的面积等于10,求t的值.

(1)用含t的代数式表示AQ的长;
(2)若△PEQ的面积等于10,求t的值.
如图是高空秋千的示意图, 小明从起始位置点A处绕着点O经过最低点B, 最终荡到最高点C处,若∠AOC=90°, 点A与点B的高度差AD=1米, 水平距离BD=4米,则点C与点B的高度差CE为_____ 米.
