- 数与式
- 方程与不等式
- 函数
- 图形的性质
- SSS
- SAS
- 尺规作图——作角
- 尺规作图——作三角形
- HL
- 全等的判定综合
- + 全等三角形的辅助线问题
- 连接两点作辅助线
- 全等三角形——倍长中线模型
- 全等三角形——旋转模型
- 全等三角形——垂线模型
- 全等三角形——其他模型
- 证一条线段等于两条线段和(差)
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在△ABC中,∠ABC=45° , BC=4,以AC为直角边,点A为直角顶点向△ABC的外侧作等腰直角三角形ACD,连接BD,则△DBC的面积为( ) .


A.8 | B.10 | C.4![]() | D.8![]() |
如图,点C为线段AB上一点,△ACM,△CBN是等边三角形,直线AN,MC交于点E,直线BM、CN交与F点.
(1)求证:AN=BM;
(2)求证:△CEF为等边三角形;
(3)将△ACM绕点C按逆时针方向旋转900,其他条件不变,在图2中补出符合要求的图形,并判断第(1)(2)两小题的结论是否仍然成立,不要求证明.
(1)求证:AN=BM;
(2)求证:△CEF为等边三角形;
(3)将△ACM绕点C按逆时针方向旋转900,其他条件不变,在图2中补出符合要求的图形,并判断第(1)(2)两小题的结论是否仍然成立,不要求证明.

观察推理:如图1,△ABC中,∠ACB=90°,AC=BC,直线l过点C,点A、B在直线l同侧,BD⊥l,AE⊥l,垂足分别为D、E.

(1)求证:△AEC≌△CDB;
(2)类比探究:如图2,Rt△ABC中,∠ACB=90°,AC=6,将斜边AB绕点A逆时针旋转90°至AB′,连接B′C,求△AB′C的面积;
(3)拓展提升:如图3,∠E=60°,EC=EB=4cm,点O在BC上,且OC=3cm,动点P从点E沿射线EC以2cm/s速度运动,连结OP,将线段OP绕点O逆时针旋转120°得到线段OF.要使点F恰好落在射线EB上,求点P运动的时间.

(1)求证:△AEC≌△CDB;
(2)类比探究:如图2,Rt△ABC中,∠ACB=90°,AC=6,将斜边AB绕点A逆时针旋转90°至AB′,连接B′C,求△AB′C的面积;
(3)拓展提升:如图3,∠E=60°,EC=EB=4cm,点O在BC上,且OC=3cm,动点P从点E沿射线EC以2cm/s速度运动,连结OP,将线段OP绕点O逆时针旋转120°得到线段OF.要使点F恰好落在射线EB上,求点P运动的时间.
如图,ΔABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置使得∠CAF=∠BAE,连接EF,EF与AC交于点G.

(1)求证:EF=BC;
(2)若∠ABC=60º,∠ACB=25º,求∠FGC的度数.

(1)求证:EF=BC;
(2)若∠ABC=60º,∠ACB=25º,求∠FGC的度数.
如图,在△ABC中,CE为三角形的角平分线,AD⊥CE于点F交BC于点D
(1) 若∠BAC=96°,∠B=28°,直接写出∠BAD=__________°
(2) 若∠ACB=2∠B
① 求证:AB=2CF
② 若EF=2,CF=5,直接写出
=__________
(1) 若∠BAC=96°,∠B=28°,直接写出∠BAD=__________°
(2) 若∠ACB=2∠B
① 求证:AB=2CF
② 若EF=2,CF=5,直接写出


将正方形ABCD和正方形BEFG如图(一)所示放置,已知AB=5
,BE=6,将正方形BEFG绕点B顺时针旋转一定的角度α(0°≤α≤360°)到图(二)所示:连接AE,CG,

(1)求线段AE与CG的关系,并给出证明
(2)当旋转至某一个角度时,点C,E,G在同一条直线上,请画出示意图形,并求出此时AE的长


(1)求线段AE与CG的关系,并给出证明
(2)当旋转至某一个角度时,点C,E,G在同一条直线上,请画出示意图形,并求出此时AE的长
如图,在△ABC中∠BAC=120°,AB=AC,点M、N在边BC上,且∠MAN=60°若BM=2,CN=3,则MN的长为_______.
