- 数与式
- 方程与不等式
- 函数
- 图形的性质
- SSS
- SAS
- 尺规作图——作角
- 尺规作图——作三角形
- + HL
- 用HL证全等
- 全等的性质和HL综合
- 全等的判定综合
- 全等三角形的辅助线问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,△ABC中,∠C=90°,AC=10cm,BC=5cm,线段PQ=AB,点P、Q分别在AC和与AC垂直的射线AM上移动,当AP= ________ 时,△ABC和△QPA全等.

如图,正方形EFGH的顶点均在正方形ABCD的边上,若正方形EFGH的面积比正方形ABCD的面积小32,则AF×BF=______.

如图,Rt△CEF中,∠C=90°,∠CEF, ∠CFE外角平分线交于点A,过点A分别作直线CE、CF的垂线,B、D为垂足.

(1)求证:四边形ABCD是正方形,
(2)已知AB的长为6,求(BE+6)(DF+6)的值,
(3)借助于上面问题的解题思路,解决下列问题:若三角形PQR中,∠QPR=45°,一条高是PH,长度为6,QH=2,则HR= .

(1)求证:四边形ABCD是正方形,
(2)已知AB的长为6,求(BE+6)(DF+6)的值,
(3)借助于上面问题的解题思路,解决下列问题:若三角形PQR中,∠QPR=45°,一条高是PH,长度为6,QH=2,则HR= .
已知矩形OABC的边长OA=4,AB=3,E是OA的中点,分别以OA、OC所在的直线为x轴、y轴,建立如图1所示的平面直角坐标系,直线l经过C、E两点.
(1)求直线l的函数表达式;
(2)如图2,在长方形OABC中,过点E作EG⊥EC交AB于点G,连接CG,将△COE沿直线l折叠后得到△CEF,点F恰好落在CG上.证明:GF=G

(1)求直线l的函数表达式;
(2)如图2,在长方形OABC中,过点E作EG⊥EC交AB于点G,连接CG,将△COE沿直线l折叠后得到△CEF,点F恰好落在CG上.证明:GF=G
A. (3)在(2)的条件下求四边形AGFE的面积. |
