- 数与式
- 方程与不等式
- 函数
- 图形的性质
- SSS
- + SAS
- 用SAS直接证明三角形全等
- 用SAS间接证明三角形全等
- 全等的性质和SAS综合
- 尺规作图——作角
- 尺规作图——作三角形
- HL
- 全等的判定综合
- 全等三角形的辅助线问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在△ABC中AB=AC,点D,E,F分别在AB,BC,AC边上,且BE=CF,AD+EC=AB.
(1)求证:△DEF是等腰三角形;
(2)当∠A=40°时,求∠DEF的度数;
(3)猜想:当∠A为多少度时,∠DEF=60°?请说明理由.
(1)求证:△DEF是等腰三角形;
(2)当∠A=40°时,求∠DEF的度数;
(3)猜想:当∠A为多少度时,∠DEF=60°?请说明理由.

在△ABC中,AB=AC,点D是直线BC上一点(不与B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连结C
A.![]() (1)如图1,当点D在线段BC上时,如果∠BAC=90°,则∠BCE= °. (2)设∠BAC=α,∠BCE=β. ①如图2,当点D在线段BC上移动时,α,β之间有怎样的数量关系?请说明理由. ②当点D在直线BC上移动时,α,β之间有怎样的数量关系?请你在备用图上画出图形,并直接写出你的结论. |
如图,已知点E、C在线段BF上,且BE=CF,CM∥DF,
(1)作图:在BC上方作射线BN,使∠CBN=∠1,交CM的延长线于点A(用尺规作图法,保留作图痕迹,不写作法);
(2)在(1)的条件下,求证:AC=DF.
(1)作图:在BC上方作射线BN,使∠CBN=∠1,交CM的延长线于点A(用尺规作图法,保留作图痕迹,不写作法);
(2)在(1)的条件下,求证:AC=DF.

如图,为了测量池塘两端点
间的距离,小亮先在平地上取一个可以直接到达点
和点
的点
,连接
并延长到点
,使
,连接
并延长到点
,使
,连接
.现测得
米,则
两点间的距离为__________米.














如图所示,AD=AE,AB=AC,∠BAC=∠DAE,B、D、E在同一直线上,∠1=22°,∠2=30°,求∠3的度数( )


A.42° | B.52° | C.62° | D.72° |