- 数与式
- 方程与不等式
- 函数
- 图形的性质
- SSS
- SAS
- 尺规作图——作角
- 尺规作图——作三角形
- HL
- 全等的判定综合
- + 全等三角形的辅助线问题
- 连接两点作辅助线
- 全等三角形——倍长中线模型
- 全等三角形——旋转模型
- 全等三角形——垂线模型
- 全等三角形——其他模型
- 证一条线段等于两条线段和(差)
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
在△ABC中,AC=BC,∠ACB=90°,D、E是直线AB上两点.∠DCE=45°
(1)当CE⊥AB时,点D与点A重合,求证:DE2 =AD2 +BE2
(2)当AB=4时,求点E到线段AC的最短距离
(3)当点D不与点A重合时,探究:DE2 =AD2+BE2是否成立?若成立,请证明;若不成立,请说明理由
(1)当CE⊥AB时,点D与点A重合,求证:DE2 =AD2 +BE2
(2)当AB=4时,求点E到线段AC的最短距离
(3)当点D不与点A重合时,探究:DE2 =AD2+BE2是否成立?若成立,请证明;若不成立,请说明理由

通过对下面数学模型的研究学习,解决下列问题:
(模型呈现)
(1)如图1,
,
,过点
作
于点
,过点
作
于点
.由
,得
.又
,可以推理得到
.进而得到
_____,
_____.我们把这个数学模型称为“
字”模型或“一线三等角”模型;
(模型应用)
(2)①如图2,
,
,
,连接
,
,且
于点
,
与直线
交于点
.求证:点
是
的中点.
②如图3,在平面直角坐标系
中,点
为平面内任一点,点
的坐标为
.若
是以
为斜边的等腰直角三角形,请直接写出点
的坐标.
(模型呈现)
(1)如图1,















(模型应用)
(2)①如图2,












②如图3,在平面直角坐标系








如图,∠AOB=120°,OC平分∠AOB,∠MCN=60°,CM与射线OA相交于M点,CN与直线BO相交于N点.把∠MCN绕着点C旋转.
(1)如图1,当点N在射线OB上时,求证:OC=OM+ON;
(2)如图2,当点N在射线OB的反向延长线上时,OC与OM,ON之间的数量关系是 (直接写出结论,不必证明)
(1)如图1,当点N在射线OB上时,求证:OC=OM+ON;
(2)如图2,当点N在射线OB的反向延长线上时,OC与OM,ON之间的数量关系是 (直接写出结论,不必证明)

已知有公共顶点
的△
和△
都是等边三角形,且
>
.

(1)如图1,当点
恰好在
的延长线上时,连结
,
分别交
,
于点
,
.
①求证:
;
②连接
,求证:
∥
;
(2)图2是由图1中的△
绕点
顺时针旋转角
(
<
<
)得到,使得
恰好经过
的中点
,试猜想线段
,
,
之间的数量关系,并说明理由.






(1)如图1,当点








①求证:

②连接



(2)图2是由图1中的△












有些数学题,表面上看起来无从下手,但根据图形的特点,可补全成为特殊的图形,然后根据特殊几何图形的性质去考虑,常常可以获得简捷解法.根据阅读,请解答问题:如图所示,已知△ABC的面积为16cm2,AD平分∠BAC,且AD⊥BD于点D,则△ADC的面积为___________cm2.

如图,在△ABC中,
,
,直线
经过点
,且
于
,
于
.
(1)当直线
绕点
旋转到图1的位置时,
①求证:△ADC≌△CE








(1)当直线


①求证:△ADC≌△CE
A. ②求证:DE=AD+B | B. (2)当直线 ![]() ![]() ![]() ![]() ![]() ![]() |
如图1, △ABC和△CDE均为等腰三角形,AC=BC, CD=CE, AC>CD, ∠ACB=∠DCE=a,且点A、D、E在同一直线上,连结BE.

(1)求证: AD=BE.
(2)如图2,若a=90°,CM⊥AE于E.若CM=7, BE=10, 试求AB的长.
(3)如图3,若a=120°, CM⊥AE于E, BN⊥AE于N, BN=a, CM=b,直接写出AE的值(用a, b 的代数式表示).

(1)求证: AD=BE.
(2)如图2,若a=90°,CM⊥AE于E.若CM=7, BE=10, 试求AB的长.
(3)如图3,若a=120°, CM⊥AE于E, BN⊥AE于N, BN=a, CM=b,直接写出AE的值(用a, b 的代数式表示).
如图,在Rt△ABC中,∠C=90°,AC=BC,△ABC绕点B顺时针旋转45°得到△BDE,点D的对应点为点A,连接AD,求∠ADE的度数.
