- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 连接两点作辅助线
- 全等三角形——倍长中线模型
- 全等三角形——旋转模型
- + 全等三角形——垂线模型
- 全等三角形——其他模型
- 证一条线段等于两条线段和(差)
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
过正方形
(四边都相等,四个角都是直角)的顶点
作一条直线
.



图(1) 图(2) 图(3)
(1)当
不与正方形任何一边相交时,过点
作
于点
,过点
作
于点
如图(1),请写出
,
,
之间的数量关系,并证明你的结论.
(2)若改变直线
的位置,使
与
边相交如图(2),其它条件不变,
,
,
的关系会发生变化,请直接写出
,
,
的数量关系,不必证明;
(3)若继续改变直线
的位置,使
与
边相交如图(3),其它条件不变,
,
,
的关系又会发生变化,请直接写出
,
,
的数量关系,不必证明.






图(1) 图(2) 图(3)
(1)当










(2)若改变直线









(3)若继续改变直线









(基础模型)
已知等腰直角△ABC,∠ACB=90°,AC=CB,过点C任作一条直线l(不与CA、CB重合),过点A作AD⊥l于D,过点B作BE⊥l于E.

(1)如图②,当点A、B在直线l异侧时,求证:△ACD≌△CBE
(模型应用)
在平面直角坐标性xOy中,已知直线l:y=kx﹣4k(k为常数,k≠0)与x轴交于点A,与y轴的负半轴交于点B.以AB为边、B为直角顶点作等腰直角△ABC.
(2)若直线l经过点(2,﹣3),当点C在第三象限时,点C的坐标为 .
(3)若D是函数y=x(x<0)图象上的点,且BD∥x轴,当点C在第四象限时,连接CD交y轴于点E,则EB的长度为 .
(4)设点C的坐标为(a,b),探索a,b之间满足的等量关系,直接写出结论.(不含字母k)
已知等腰直角△ABC,∠ACB=90°,AC=CB,过点C任作一条直线l(不与CA、CB重合),过点A作AD⊥l于D,过点B作BE⊥l于E.

(1)如图②,当点A、B在直线l异侧时,求证:△ACD≌△CBE
(模型应用)
在平面直角坐标性xOy中,已知直线l:y=kx﹣4k(k为常数,k≠0)与x轴交于点A,与y轴的负半轴交于点B.以AB为边、B为直角顶点作等腰直角△ABC.
(2)若直线l经过点(2,﹣3),当点C在第三象限时,点C的坐标为 .
(3)若D是函数y=x(x<0)图象上的点,且BD∥x轴,当点C在第四象限时,连接CD交y轴于点E,则EB的长度为 .
(4)设点C的坐标为(a,b),探索a,b之间满足的等量关系,直接写出结论.(不含字母k)

如图1 ,等腰直角三角形 ABC 中,∠ACB=90°,CB=CA,直线 DE 经过点 C,过 A 作 AD⊥DE 于点 D,过 B 作 BE⊥DE 于点 E,则△BEC≌△CDA,我们称这种全等模型为 “K 型全等”.(不需要证明)

(模型应用)若一次函数 y=kx+4(k≠0)的图像与 x 轴、y 轴分别交于 A、B 两点.
(1)如图 2,当 k=-1 时,若点 B 到经过原点的直线 l 的距离 BE 的长为 3,求点 A 到直线 l 的距离 AD 的长;

(2)如图 3,当 k=-
时,点 M 在第一象限内,若△ABM 是等腰直角三角形,求点
M 的坐标;

(3)当 k 的取值变化时,点 A 随之在 x 轴上运动,将线段 BA 绕点 B 逆时针旋转 90° 得到 BQ,连接 OQ,求 OQ 长的最小值.

(模型应用)若一次函数 y=kx+4(k≠0)的图像与 x 轴、y 轴分别交于 A、B 两点.
(1)如图 2,当 k=-1 时,若点 B 到经过原点的直线 l 的距离 BE 的长为 3,求点 A 到直线 l 的距离 AD 的长;

(2)如图 3,当 k=-

M 的坐标;

(3)当 k 的取值变化时,点 A 随之在 x 轴上运动,将线段 BA 绕点 B 逆时针旋转 90° 得到 BQ,连接 OQ,求 OQ 长的最小值.

(模型建立)
如图1,等腰直角三角形
中,
,
,直线
经过点
,过
作
于点
,过
作
于点
.

求证:
;
(模型应用)
①已知直线
:
与
轴交于点
,与
轴交于点
,将直线
绕着点
逆时针旋转
至直线
,如图2,求直线
的函数表达式;

②如图3,在平面直角坐标系中,点
,作
轴于点
,作
轴于点
,
是线段
上的一个动点,点
是直线
上的动点且在第一象限内.问点
、
、
能否构成以点
为直角顶点的等腰直角三角形,若能,请直接写出此时点
的坐标,若不能,请说明理由.
如图1,等腰直角三角形












求证:

(模型应用)
①已知直线












②如图3,在平面直角坐标系中,点















如图,在平面直角坐标系中,已知一次函数
的图像与x轴交于点
,与
轴交于点
.

(1)求直线
的解析式;
(2)在坐标系中能否找到点
,使得
且
?如果能,求出满足条件的点
的坐标;如果不能,请说明理由.





(1)求直线

(2)在坐标系中能否找到点




在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S4=( )


A.4 | B.3 | C.2 | D.1 |
如图,在
中,BC=1,
.

(1)求AB的长度:
(2)过点A作AB的垂线,交AC的垂直平分线于点D ,以AB为一边作等边
.
①连接CE,求证: BD=CE;
②连接DE交AB于



(1)求AB的长度:
(2)过点A作AB的垂线,交AC的垂直平分线于点D ,以AB为一边作等边

①连接CE,求证: BD=CE;
②连接DE交AB于
A.求![]() |
在等腰Rt△ABC中,∠BAC=90°,AB=AC,点P为AC上一点,M为BC上一点.

(1)若AM⊥BP于点E.
①如图1,BP为△ABC的角平分线,求证:PA=PM;
②如图2,BP为△ABC的中线,求证:BP=AM+MP.
(2)如图3,若点N在AB上,AN=CP,AM⊥PN,求
的值.

(1)若AM⊥BP于点E.
①如图1,BP为△ABC的角平分线,求证:PA=PM;
②如图2,BP为△ABC的中线,求证:BP=AM+MP.
(2)如图3,若点N在AB上,AN=CP,AM⊥PN,求
