- 数与式
- 方程与不等式
- 函数
- 图形的性质
- SSS
- SAS
- 尺规作图——作角
- 尺规作图——作三角形
- HL
- 全等的判定综合
- + 全等三角形的辅助线问题
- 连接两点作辅助线
- 全等三角形——倍长中线模型
- 全等三角形——旋转模型
- 全等三角形——垂线模型
- 全等三角形——其他模型
- 证一条线段等于两条线段和(差)
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
取一副三角板按图
拼接,固定三角板
,将三角板
绕点
依顺时针方向旋转一个大小为
的角
得到
,图
所示.试问:

当
为多少时,能使得图
中
?说出理由,

连接
,假设
与
交于
与
交于
,当
时,探索
值的大小变化情况,并给出你的证明.























过正方形
(四边都相等,四个角都是直角)的顶点
作一条直线
.



图(1) 图(2) 图(3)
(1)当
不与正方形任何一边相交时,过点
作
于点
,过点
作
于点
如图(1),请写出
,
,
之间的数量关系,并证明你的结论.
(2)若改变直线
的位置,使
与
边相交如图(2),其它条件不变,
,
,
的关系会发生变化,请直接写出
,
,
的数量关系,不必证明;
(3)若继续改变直线
的位置,使
与
边相交如图(3),其它条件不变,
,
,
的关系又会发生变化,请直接写出
,
,
的数量关系,不必证明.






图(1) 图(2) 图(3)
(1)当










(2)若改变直线









(3)若继续改变直线









阅读材料:如图1,
中,点
,
在边
上,点
在
上,
,
,
,延长
,
交于点
,
,求证:
.

分析:等腰三角形是一种常见的轴对称图形,几何试题中我们常将一腰所在的三角形沿着等腰三角形的对称轴进行翻折,从而构造轴对称图形.
①小明的想法是:将
放到
中,沿等腰
的对称轴进行翻折,即作
交
于
(如图2)

②小白的想法是:将
放到
中,沿等腰
的对称轴进行翻折,即作
交
的延长线于
(如图3)

经验拓展:等边
中,
是
上一点,连接
,
为
上一点,
,过点
作
交
的延长线于点
,
,若
,
,求
的长(用含
,
的式子表示).















分析:等腰三角形是一种常见的轴对称图形,几何试题中我们常将一腰所在的三角形沿着等腰三角形的对称轴进行翻折,从而构造轴对称图形.
①小明的想法是:将







②小白的想法是:将







经验拓展:等边


















如图,在Rt△ABC 中,∠C=90°,AC=BC,AB=8,点D为AB的中点,若直角MDN绕点D旋转分别交AC于点E,交BC于点F,则下列说法:①AE="CF" ②EC+CF=
③DE="DF" ④若△ECF的面积为一个定值,则EF的长也是一个定值,其中正确的是()



A.①② | B.①③ | C.①②③ | D.①②③④ |
某中学八年级学生在学习等腰三角形的相关知识时时,经历了以下学习过程:
(1)(探究发现)如图1,在
中,若
平分
,
时,可以得出
,
为
中点,请用所学知识证明此结论.
(2)(学以致用)如果
和等腰
有一个公共的顶点
,如图2,若顶点
与顶点
也重合,且
,试探究线段
和
的数量关系,并证明.
(3)(拓展应用)如图3,在(2)的前提下,若顶点
与顶点
不重合,
,(2)中的结论还成立吗?证明你的结论
(1)(探究发现)如图1,在







(2)(学以致用)如果








(3)(拓展应用)如图3,在(2)的前提下,若顶点




两块等腰直角三角尺
与
(不全等)如图(1)放置,则有结论:①
②
;若把三角尺
绕着点
逆时针旋转一定的角度后,如图(2)所示,判断结论:①
②
是否都还成立?若成立请给出证明,若不成立请说明理由.








