刷题首页
题库
初中数学
题干
如图,在△ABC中,∠ABC=45° , BC=4,以AC为直角边,点A为直角顶点向△ABC的外侧作等腰直角三角形ACD,连接BD,则△DBC的面积为( ) .
A.8
B.10
C.4
D.8
上一题
下一题
0.99难度 单选题 更新时间:2019-11-19 08:15:33
答案(点此获取答案解析)
同类题1
如图,
是等边三角形,点
在边
上( “点D不与
重合),点
是射线
上的一个动点(点
不与点
重合),连接
,以
为边作作等边三角形
,连接
.
(1)如图1,当
的延长线与
的延长线相交,且
在直线
的同侧时,过点
作
,
交
于点
,求证:
;
(2)如图2,当
反向延长线与
的反向延长线相交,且
在直线
的同侧时,求证:
;
(3)如图3,当
反向延长线与线段
相交,且
在直线
的异侧时,猜想
、
、
之间的等量关系,并说明理由.
同类题2
如图,P是等边△ABC内一点,且PA=6,PC=8,PB=10,若△APB绕点A逆时针旋转60°后,得到△AP′C,则∠APC=
_____
°.
同类题3
如图,CA=CB, CD=CE,∠ACB=∠DCE=α, AD、BE相交于点H
(1)求证:AD=BE.
(2)连接CH, 求证:CH平分∠AHE.
(3)求∠AHE的度数(用含α的式子表示).
同类题4
如图,
AN
∥
CB
,
B
、
N
在
AC
同侧,
BM
、
CN
交于点
D
,
AC
=
BC
,且∠
A
+∠
MDN
=180°.
(1)如图1,当∠
NAC
=90°,求证:
BM
=
CN
;
(2)如图2,当∠
NAC
为锐角时,试判断
BM
与
CN
关系并证明;
(3)如图3,在(1)的条件下,且∠
MBC
=30°,一动点
E
在线段
BM
上运动过程中,连
CE
,将线段
CE
绕点
C
顺时针旋转90°至
CF
,取
BE
中点
P
,连
AP
、
FP
.设四边形
APFC
面积为
S
,若
AM
=
﹣1,
MC
=1,在
E
点运动过程中,请写出
S
的取值范围
.
同类题5
已知,△
ABC
中,∠
ACB
=90°,
AC
=
BC
,点
E
是
BC
上一点,连接
AE
(1)如图1,当
AE
平分∠
BAC
时,
EH
⊥
AB
于
H
,△
EHB
的周长为10
m
,求
AB
的长;
(2)如图2,延长
BC
至
D
,使
DC
=
BC
,将线段
AE
绕点
A
顺时针旋转90°得线段
AF
,连接
DF
,过点
B
作
BG
⊥
BC
,交
FC
的延长线于点
G
,求证:
BG
=
BE
.
相关知识点
图形的性质
三角形
全等三角形
三角形全等的判定
全等三角形的辅助线问题
全等三角形——旋转模型