刷题首页
题库
高中数学
题干
我们知道,圆的面积的导数为圆的周长,即:若圆的半径为r,则圆的面积
,
为圆的周长.通过类比,有以下结论:
①正方形面积的导数为正方形的周长;
②正方体体积的导数为正方体的表面积;
③球体的体积的导数为球体的表面积.
其中正确的是________(填序号).
上一题
下一题
0.99难度 填空题 更新时间:2018-10-10 08:12:41
答案(点此获取答案解析)
同类题1
在平面中有命题:等腰三角形底边上任一点到两腰距离之和等于一腰上的高.把此结论类比到空间的正三棱锥中有____________.
同类题2
在平面几何里,有勾股定理:“设
的两边AB、AC互相垂直,则
.”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面积与底面积间的关系,可以得到的正确结论是:“设三棱锥A-BCD的三个侧面ABC 、ACD、ADB两两互相垂直,则
”.
同类题3
对于命题:
若
O
是线段
AB
上一点,则有|
|·
+|
|·
=0.
将它类比到平面的情形是:
若
O
是△
ABC
内一点,则有
S
△
OBC
·
+
S
△
OCA
·
+
S
△
OAB
·
=0.
将它类比到空间的情形应该是:
若
O
是四面体
ABCD
内一点,则有___________________________________________.
同类题4
已知:由图①得面积关系:
.
(1)试用类比的思想写出由图②所得的体积关系
;
(2)证明你的结论是正确的.
同类题5
已知边长分别为
a
,
b
,
c
的三角形
ABC
面积为
S
,内切圆
O
的半径为
r
,连接
OA
,
OB
,
OC
,则三角形
OAB
,
OBC
,
OAC
的面积分别为
,由
得
,类比得四面体的体积为
V
,四个面的面积分别为
,
,
,
,则内切球的半径
______.
相关知识点
推理与证明
合情推理与演绎推理
类比推理
平面与空间中的类比