- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 互斥事件与对立事件关系的辨析
- 确定所给事件的对立关系
- 写出某事件的对立事件
- 利用对立事件的概率公式求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
有下列说法
①互斥事件不一定是对立事件,对立事件一定是互斥事件
②演绎推理是从特殊到一般的推理,它的一般模式是“三段论”
③残差图的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高
④若
,则事件
与
互斥且对立
⑤甲乙两艘轮船都要在某个泊位停靠4小时,假定它们在一昼夜的时间段中随机到达,则这两艘船中至少有一艘在停靠泊位时必须等待的概率为
.
其中正确的说法是______ (写出全部正确说法的序号).
①互斥事件不一定是对立事件,对立事件一定是互斥事件
②演绎推理是从特殊到一般的推理,它的一般模式是“三段论”
③残差图的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高
④若



⑤甲乙两艘轮船都要在某个泊位停靠4小时,假定它们在一昼夜的时间段中随机到达,则这两艘船中至少有一艘在停靠泊位时必须等待的概率为

其中正确的说法是
下列说法正确的是( )
A.事件A, B中至少有一个发生的概率一定比A,B中恰有一个发生的概率大 |
B.事件A,B同时发生的概率一定比A, B中恰有一个发生的概率小 |
C.互斥事件不一定是对立事件,对立事件一定是互斥事件 |
D.互斥事件一定是对立事件,对立事件不一定是互斥事件 |
将一枚质地均匀的骰子向上抛掷1次.设事件A表示向上的一面出现奇数点,事件B表示向上的一面出现的点数不超过3,事件C表示向上的一面出现的点数不小于4,则( )
A.A与B是互斥而非对立事件 | B.A与B是对立事件 |
C.B与C是互斥而非对立事件 | D.B与C是对立事件 |
抛掷一枚骰子,记事件
为“落地时向上的数是奇数”,事件
为“落地时向上的数是偶数”,事件
为“落地时向上的数是
的倍数”,事件
为“落地时向上的数是
或
”,则下列每对事件是互斥事件但不是对立事件的是( )







A.![]() ![]() | B.![]() ![]() | C.![]() ![]() | D.![]() ![]() |
从装有20个红球和30个白球的罐子里任取两个球,下列情况中是互斥而不是对立的两个事件是 ( )
A.至少有一个红球,至少有一个白球 | B.恰有一个红球,都是白球 |
C.至少有一个红球,都是白球 | D.至多有一个红球,都是红球 |
已知事件M”3粒种子全部发芽”,事件N“3粒种子都不发芽”,那么事件M和N是( )
A.互斥且对立事件 | B.不是互斥事件 |
C.互斥但不对立事件 | D.对立事件 |
某射手在一次射击中,射中10环,9环,8环的概率分别是0.20, 0.30, 0.10.则此射手在一次射击中不够8环的概率为___________________ .
有甲、乙两种报纸供市民订阅,记事件A为“只订甲报纸”,事件B为“至少订一种报纸”,事件C为“至多订一种报纸”,事件D为“不订甲报纸”,事件E为“一种报纸也不订”.下列命题正确的是______ .
①A与C是互斥事件 ②B与E 是互斥事件,且是对立事件
③B与C不是互斥事件 ④C与E是互斥事件
①A与C是互斥事件 ②B与E 是互斥事件,且是对立事件
③B与C不是互斥事件 ④C与E是互斥事件