- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 互斥事件与对立事件关系的辨析
- 确定所给事件的对立关系
- 写出某事件的对立事件
- 利用对立事件的概率公式求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
从装有两个红球和三个黑球的口袋里任取两个球,那么互斥而不对立的两个事件是( )
A.“至少有一个黑球”与“都是黑球” | B.“至少有一个黑球”与“至少有一个红球” |
C.“恰好有一个黑球”与“恰好有两个黑球” | D.“至少有一个黑球”与“都是红球” |
10件同类产品中,有8件是正品,2件是次品,从中任意抽出3件,与事件“1件正品2件次品”互斥而不对立的事件为( )
A.恰有1件次品 | B.至多有1件次品 |
C.至少有1件次品 | D.既有正品也有次品 |
从装有除颜色外完全相同的2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( )
A.至少有1个白球,都是白球 | B.至少有1个白球,至少有1个红球 |
C.恰有1个白球,恰有2个白球 | D.至少有1个白球,都是红球 |
12件同类产品中,有10件是正品,2件是次品,从中任意抽出3件,与“抽得1件次品2件正品”互斥而不对立的事件是( )
A.抽得3件正品 | B.抽得至少有1件正品 |
C.抽得至少有1件次品 | D.抽得3件正品或2件次品1件正品 |
把红、黄、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四个人,每人一张,则事件“甲分得红牌”与事件“丁分得红牌”( )
A.不是互斥事件 | B.是互斥但不对立事件 |
C.是对立事件 | D.以上答案都不对 |
从1至9这9个自然数中任取两个:
恰有一个偶数和恰有一个奇数;
至少有一个是奇数和两个数都是奇数;
至多有一个奇数和两个数都是奇数;
至少有一个奇数和至少有一个偶数.
在上述事件中,是对立事件的是





在上述事件中,是对立事件的是


A.![]() | B.![]() | C.![]() | D.![]() |
口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件
“取出的两球同色”,
“取出的2球中至少有一个黄球”,
“取出的2球至少有一个白球”,
“取出的两球不同色”,
“取出的2球中至多有一个白球”.下列判断中正确的序号为________ .
①
与
为对立事件;②
与
是互斥事件;③
与
是对立事件:④
;⑤
.





①








某小组有2名男生和2名女生,从中任选2名同学去参加演讲比赛,在下列选项中,互斥而不对立的两个事件是( )
A.“至少有1名女生”与“都是女生” | B.“恰有1名女生”与“恰有2名女生” |
C.“至少有1名女生”与“至多有1名女生” | D.“至少有1名男生”与“都是女生” |
在8件同类产品中,有6件是正品,2件次品,从这8件产品中任意抽取2件产品,则下列说法正确的是
A.事件“至少有一件是正品”是必然事件 |
B.事件“都是次品”是不可能事件 |
C.事件“都是正品”和“至少一个正品”是互斥事件 |
D.事件“至少一个次品”和“都是正品”是对立事件 |
把红、黑、白3张纸牌随机地分给甲、乙、丙3个人,每个人分得1张 , 事件“甲分得红牌”与“乙分得红牌”是( )
A.对立事件 | B.两个不可能事件 |
C.互斥但不对立事件 | D.两个概率不相等的事件 |