- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机现象
- 频率与概率
- 生活中的概率
- 事件的关系与运算
- 互斥事件
- + 对立事件
- 互斥事件与对立事件关系的辨析
- 确定所给事件的对立关系
- 写出某事件的对立事件
- 利用对立事件的概率公式求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某厂销售部以箱为单位销售某种零件,每箱的定价为200元,低于100箱按原价销售;不低于100箱通过双方议价,买方能以优惠8%成交的概率为0.6,以优惠6%成交的概率为0.4.
(1)甲、乙两单位都要在该厂购买150箱这种零件,两单位各自达成的成交价相互独立,求甲单位优惠比例不低于乙单位优惠比例的概率;
(2)某单位需要这种零件650箱,求购买总价X的数学期望.
(1)甲、乙两单位都要在该厂购买150箱这种零件,两单位各自达成的成交价相互独立,求甲单位优惠比例不低于乙单位优惠比例的概率;
(2)某单位需要这种零件650箱,求购买总价X的数学期望.
一个均匀的正方体玩具的各个面上分别标有数字1,2,3,4,5,6,将这个玩具向上抛掷一次,设事件
表示向上的一面出现奇数点,事件
表示向上的一面出现的点数不超过2,事件
表示向上的一面出现的点数不小于4,则( )



A.![]() ![]() | B.![]() ![]() |
C.![]() ![]() | D.![]() ![]() |
把J、Q、K3张方块牌随机分给甲、乙、丙三人,每人1张,事件A:“甲得方块J”与事件B:“乙得方块J”是( )
A.不可能事件 | B.必然事件 | C.对立事件 | D.互斥但不对立事件 |
已知某人做某件事,成功的概率只有0.1.用计算器计算,如果他尝试10次,而且每次是否成功都相互独立,则他至少有一次成功的概率为多少(精确到0.01)?如果他尝试20次呢?如果要保证至少成功一次的概率不小于90%,则他至少要尝试多少次?
如图,由甲、乙两个元件组成一个并联电路,每个元件可能正常或失效.设事件A=“甲元件正常”,B=“乙元件正常”.

(1)写出表示两个元件工作状态的样本空间;
(2)用集合的形式表示事件A,B以及它们的对立事件;
(3)用集合的形式表示事件
和事件
,并说明它们的含义及关系.

(1)写出表示两个元件工作状态的样本空间;
(2)用集合的形式表示事件A,B以及它们的对立事件;
(3)用集合的形式表示事件


甲、乙两人独立地解决同一问题,甲解出此问题的概率是
,乙解出此问题的概率是
.求:
(1)甲、乙都解出此问题的概率;
(2)甲、乙都未解出此问题的概率;
(3)甲、乙恰有一人解出此问题的概率;
(4)至少有一人解出此问题的概率.


(1)甲、乙都解出此问题的概率;
(2)甲、乙都未解出此问题的概率;
(3)甲、乙恰有一人解出此问题的概率;
(4)至少有一人解出此问题的概率.
甲、乙、丙三位同学独立地解决同一个问题,已知三位同学能够正确解决这个问题的概率分别为
,则有人能够解决这个问题的概率为( )

A.![]() | B.![]() | C.![]() | D.![]() |