- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机现象
- 频率与概率
- 生活中的概率
- 事件的关系与运算
- 互斥事件
- + 对立事件
- 互斥事件与对立事件关系的辨析
- 确定所给事件的对立关系
- 写出某事件的对立事件
- 利用对立事件的概率公式求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某自助银行共有
三台ATM机,在某段时间内,这三台ATM机被占用的概率分别为
,
,
若一位顾客到自助银行使用ATM机,则其不需要等待的概率为_____.




有2个人在一座7层大楼的底层进入电梯,假设每一个人自第二层开始在每一层离开电梯是等可能的.
(1)求这两个人在不同层离开电梯的概率;
(2)求这两个人在同一层离开电梯的概率
(1)求这两个人在不同层离开电梯的概率;
(2)求这两个人在同一层离开电梯的概率
某高校的入学面试中有3道难度相当的题目,李明答对每道题目的概率都是0.6若每位面试者共有三次机会,一旦某次答对抽到的题目,则面试通过,否则就一直抽题到第3次为止,用Y表示答对题目,用N表示没有答对题目,假设对抽到的不同题目能否答对是独立的,那么
(1)请列出树状图并填写样本点,并写出样本空间;
(2)求李明第二次答题通过面试的概率;
(3)求李明最终通过面试的概率.
(1)请列出树状图并填写样本点,并写出样本空间;
(2)求李明第二次答题通过面试的概率;
(3)求李明最终通过面试的概率.
甲乙两人玩一种游戏,每次由甲、乙各出1到5根手指,若和为偶数算甲赢,否则算乙赢.
(1)若以
表示和为6的事件,求
;
(2)现连玩三次,若以
表示甲至少赢一次的事件,
表示乙至少赢两次的事件,试问
与
是否为互斥事件?为什么?
(3)这种游戏规则公平吗?试说明理由.
(1)若以


(2)现连玩三次,若以




(3)这种游戏规则公平吗?试说明理由.
生产同一种产品,甲机床的废品率为0.04,乙机床的废品率为0.05,从甲,乙机床生产的产品中各任取1件,求:
(1)至少有1件废品的概率;
(2)恰有1件废品的概率.
(1)至少有1件废品的概率;
(2)恰有1件废品的概率.