- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机现象
- 频率与概率
- 生活中的概率
- 事件的关系与运算
- 互斥事件
- + 对立事件
- 互斥事件与对立事件关系的辨析
- 确定所给事件的对立关系
- 写出某事件的对立事件
- 利用对立事件的概率公式求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某学校用简单随机抽样方法抽取了100名同学,对其日均课外阅读时间(单位:分钟)进行调查,结果如下:
t | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
男同学人数 | 7 | 11 | 15 | 12 | 2 | 1 |
女同学人数 | 8 | 9 | 17 | 13 | 3 | 2 |
若将日均课外阅读时间不低于60分钟的学生称为“读书迷”.
(1)将频率视为概率,估计该校4000名学生中“读书迷”有多少人?
(2)从已抽取的8名“读书迷”中随机抽取4位同学参加读书日宣传活动.
(i)求抽取的4位同学中既有男同学又有女同学的概率;
(ii)记抽取的“读书迷”中男生人数为


一个射手进行射击,记事件E1:“脱靶”,E2:“中靶”,E3:“中靶环数大于4”,E4:“中靶环数不小于5”,则在上述事件中,互斥而不对立的事件共有 ( ).
A.1对 | B.2对 | C.3对 | D.4对 |
从装有3个红球和2个白球的口袋中随机取出3个球,则事件“取出1个红球和2个白球”的对立事件是( )
A.取出的3个球中不止一个红球 |
B.取出的3个球全是红球 |
C.取出的3个球中既有红球也有白球 |
D.取出2个红球和1个白球 |
某大学在一次公益活动中聘用了10名志愿者,他们分别来自于A、B、C三个不同的专业,其中A专业2人,B专业3人,C专业5人,现从这10人中任意选取3人参加一个访谈节目.
(1)求3个人来自两个不同专业的概率;
(2)设X表示取到B专业的人数,求X的分布列.
(1)求3个人来自两个不同专业的概率;
(2)设X表示取到B专业的人数,求X的分布列.
从装有3个红球和2个白球的口袋中随机取出3个球,则事件“取出1个红球和2个白球”的对立事件是( )
A.取出2个红球和1个白球 | B.取出的3个球全是红球 |
C.取出的3个球中既有红球也有白球 | D.取出的3个球中不止一个红球 |
已知甲袋中有1个红球1个黄球,乙袋中有2个红球1个黄球,现从两袋中各随机取一个球,则取出的两球中至少有1个红球的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |