- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机现象
- 频率与概率
- + 生活中的概率
- 游戏的公平性
- 决策中的概率思想
- 天气预报中的概率解释
- 抽奖、彩票的概率解释
- 其他问题中的概率解释
- 事件的关系与运算
- 互斥事件
- 对立事件
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
气象台预报“本市明天降雨概率是70%”,下列说法正确的是( )
A.本市明天将有70%的地区降雨 | B.本市有天将有70%的时间降雨 |
C.明天出行不带雨具淋雨的可能性很大 | D.明天出行不带雨具肯定要淋雨 |
深夜,一辆出租车被牵涉进一起交通事故,该市有两家出租车公司——红色出租车公司和蓝色出租车公司,其中蓝色出租车公司和红色出租车公司分别占整个城市出租车的85%和15%.据现场目击证人说,事故现场的出租车是红色的,并对证人的辨别能力进行了测试,测得他辨认的正确率为80%,于是警察就认定红色出租车具有较大的肇事嫌疑.请问警察的认定对红色出租车公平吗?试说明理由.
某养鸡厂用鸡蛋孵化小鸡,用200个鸡蛋孵化出170只小鸡,由此估计,要孵化出2500只小鸡,大约需要鸡蛋的个数为( )
A.3022 | B.2941 | C.2800 | D.3125 |
(多选题)张明与李华两人做游戏,则下列游戏规则中公平的是( )
A.抛掷一枚质地均匀的骰子,向上的点数为奇数则张明获胜,向上的点数为偶数则李华获胜 |
B.同时抛掷两枚质地均匀的硬币,恰有一枚正面向上则张明获胜,两枚都正面向上则李华获胜 |
C.从一副不含大小王的扑克牌中抽一张,扑克牌是红色的则张明获胜,扑克牌是黑色的则李华获胜 |
D.张明、李华两人各写一个数字6或8,两人写的数字相同则张明获胜,否则李华获胜 |
人的卷舌与平舌(指是否能左右卷起来)同人的眼皮单双一样,也是由遗传自父母的基因决定的,其中显性基因记作D,隐性基因记作d;成对的基因中,只要出现了显性基因,就一定是卷舌的(这就是说,“卷舌”的充要条件是“基因对是
,
或
”).同前面一样,决定眼皮单双的基因仍记作B(显性基因)和b(隐性基因).
有一对夫妻,两人决定舌头形态和眼皮单双的基因都是
,不考虑基因突变,求他们的孩子是卷舌且单眼皮的概率.(有关生物学知识表明:控制上述两种不同性状的基因遗传时互不干扰).



有一对夫妻,两人决定舌头形态和眼皮单双的基因都是

已知n是一个三位正整数,若n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如135,256,345等)
现要从甲乙两名同学中,选出一个参加某市组织的数学竞赛,选取的规则如下:从由1,2,3,4,5,6组成的所有“三位递增数”中随机抽取1个数,且只抽取1次,若抽取的“三位递增数”是偶数,则甲参加数学竞赛;否则,乙参加数学竞赛.
(1)由1,2,3,4,5,6可组成多少“三位递增数”?并一一列举出来.
(2)这种选取规则对甲乙两名学生公平吗?并说明理由.
现要从甲乙两名同学中,选出一个参加某市组织的数学竞赛,选取的规则如下:从由1,2,3,4,5,6组成的所有“三位递增数”中随机抽取1个数,且只抽取1次,若抽取的“三位递增数”是偶数,则甲参加数学竞赛;否则,乙参加数学竞赛.
(1)由1,2,3,4,5,6可组成多少“三位递增数”?并一一列举出来.
(2)这种选取规则对甲乙两名学生公平吗?并说明理由.
一天,甲拿出一个装有三张卡片的盒子(一张卡片的两面都是绿色,一张卡片的两面都是蓝色,还有一张卡片一面是绿色,另一面是蓝色),跟乙说玩一个游戏,规则是:甲将盒子里的卡片顺序打乱后,由乙随机抽出一张卡片放在桌子上,然后卡片朝下的面的颜色决定胜负,如果朝下的面的颜色与朝上的面的颜色一致,则甲赢,否则甲输.乙对游戏的公平性提出了质疑,但是甲说:“当然公平!你看,如果朝上的面的颜色为绿色,则这张卡片不可能两面都是蓝色,因此朝下的面要么是绿色,要么是蓝色,因此,你赢的概率为
,我赢的概率也是
,怎么不公平?”分析这个游戏是否公平.


某班某次测验,全班53人中,有83%的人及格,则从该班中任抽出11人,仅有1人及格.你认为这件事可能吗?答______(填“可能”或“不可能”).
某校为调查期末考试中高一学生作弊情况,随机抽取了200名高一学生进行调查,设计了两个问题,问题1:你出生月份是奇数吗?问题2:期末考试中你作弊了吗?然后让受调查的学生每人掷一次币,出现“正面朝上”则回答问题1,出现“反面朝上”则回答问题2,答案只能填“是”或“否”不能弃权.结果统计后得到了53个“是”的答案,则估计有百分之几的学生作弊了?
某篮球运动员的投篮命中率是90%,有同学的理解是:这名运动员如果投篮100次,则定有90次投中,10次没投中.这种理解对吗?为什么?