- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 残差的计算
- + 相关指数的计算及分析
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某同学将收集到的六组数据制作成散点图如图所示,并得到其回归直线的方程为
,计算其相关系数为
,相关指数为
.经过分析确定点
为“离群点”,把它去掉后,再利用剩下的5组数据计算得到回归直线的方程为
,相关系数为
,相关指数为
.以下结论中,不正确的是









A.![]() | B.![]() |
C.![]() | D.![]() |
有一散点图如图所示,在5个
数据中去掉
(3,10)后,下列说法正确的是( )




A.残差平方和变小 | B.方差变大 |
C.相关指数![]() | D.解释变量![]() ![]() |
给出以下四个说法:
①残差点分布的带状区域的宽度越窄相关指数越小
②在刻画回归模型的拟合效果时,相关指数
的值越大,说明拟合的效果越好;
③在回归直线方程
中,当解释变量
每增加一个单位时,预报变量
平均增加
个单位;
④对分类变量
与
,若它们的随机变量
的观测值
越小,则判断“
与
有关系”的把握程度越大.
其中正确的说法是
①残差点分布的带状区域的宽度越窄相关指数越小
②在刻画回归模型的拟合效果时,相关指数

③在回归直线方程




④对分类变量






其中正确的说法是

A.①④ | B.②④ | C.①③ | D.②③ |
两个变量y与x的回归模型中,分别选择了4个不同模型,它们的相关指数R2如下,其中拟合效果最好的模型是( )
A.模型1的相关指数R2为0.98 | B.模型2的相关指数R2为0.80 |
C.模型3的相关指数R2为0.50 | D.模型4的相关指数R2为0.25 |
甲、乙、丙、丁四位同学各自对
、
两变量的线性相关性做试验,并用回归分析方法分别求得相关系数
与残差平方和
如表:
则哪位同学的试验结果体现
、
两变量有更强的线性相关性( )




| 甲 | 乙 | 丙 | 丁 |
![]() | 0.82 | 0.78 | 0.69 | 0.85 |
![]() | 106 | 115 | 124 | 103 |
则哪位同学的试验结果体现


A.甲 | B.乙 | C.丙 | D.丁 |
如图所示,5组数据
中去掉
后,下列说法错误的是( )




A.残差平方和变大 | B.相关系数![]() |
C.相关指数![]() | D.解释变量x与预报变量y的相关性变强 |


![]() | 2 | 4 | 5 | 6 | 8 |
![]() | 30 | 40 | 60 | 50 | 70 |
为了对






下列关于残差图的描述错误的是()
A.残差图的纵坐标只能是残差. |
B.残差图的横坐标可以是编号、解释变量和预报变量. |
C.残差点分布的带状区域的宽度越窄残差平方和越小. |
D.残差点分布的带状区域的宽度越窄相关指数越小. |
下列说法正确的是( )
①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样.
②某地气象局预报:5月9日本地降水概率为
,结果这天没下雨,这表明天气预报并不科学.
③在回归分析模型中,残差平方和越小,说明模型的拟合效果越好.
④在回归直线方程
中,当解释变量
每增加1个单位时,预报变量
增加0.1个单位.
①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样.
②某地气象局预报:5月9日本地降水概率为

③在回归分析模型中,残差平方和越小,说明模型的拟合效果越好.
④在回归直线方程



A.①② | B.③④ | C.①③ | D.②④ |
下面给出了根据我国2012年~2018年水果人均占有量
(单位:
)和年份代码
绘制的散点图和线性回归方程的残差图(2012年~2018年的年份代码
分别为1~7).

(1)根据散点图分析
与
之间的相关关系;
(2)根据散点图相应数据计算得
,求
关于
的线性回归方程;
(3)根据线性回归方程的残差图,分析线性回归方程的拟合效果.(精确到0.01)
附:回归方程
中斜率和截距的最小二乘估计公式分别为:
.





(1)根据散点图分析


(2)根据散点图相应数据计算得



(3)根据线性回归方程的残差图,分析线性回归方程的拟合效果.(精确到0.01)
附:回归方程

