如图是某创业公司2017年每月份公司利润(单位:百万元)情况的散点图:为了预测该公司2018年的利润情况,根据上图数据,建立了利润y与月份x的两个线性回归模型:①0.94+0.028;②0.96+0.032lnx,并得到以下统计值:

 
模型①
模型②
 
残差平方和yi2
0.000591
0.000164
总偏差平方和yi2
0.006050
 
(1)请利用相关指数R2判断哪个模型的拟合效果更好;
(2)为了激励员工工作的积极性,公司每月会根据利润的情况进行奖惩,假设本月利润为y1,而上一月利润为y2,计算z,并规定:若z≥10,则向全体员工发放奖金总额z元;若z<10,从全体员工每人的工资中倒扣10﹣z元作为惩罚,扣完为止,请根据(1)中拟合效果更好的回归模型,试预测208年4月份该公司的奖惩情况?(结果精确到小数点后两位)
参考数据及公式:1.73,2.24,1n2≈0.69,1n3≈1.10,ln5≈1.61.相关指数R2=1
当前题号:1 | 题型:解答题 | 难度:0.99
对于两个变量xy进行回归分析,得到一组样本数据:则下列说法不正确的是(   )
A.由样本数据得到的回归直线必经过样本点中心
B.残差平方和越小的模型,拟合的效果越好
C.用来刻画回归效果,的值越小,说明模型的拟合效果越好
D.若变量yx之间的相关系数,则变量yx之间具有线性相关关系
当前题号:2 | 题型:单选题 | 难度:0.99
武汉某科技公司为提高市场销售业绩,现对某产品在部分营销网点进行试点促销活动.现有两种活动方案,在每个试点网点仅采用一种活动方案,经统计,2018年1月至6月期间,每件产品的生产成本为10元,方案1中每件产品的促销运作成本为5元,方案2中每件产品的促销运作成本为2元,其月利润的变化情况如图①折线图所示.

(1)请根据图①,从两种活动方案中,为该公司选择一种较为有利的活动方案(不必说明理由);
(2)为制定本年度该产品的销售价格,现统计了8组售价xi(单位:元/件)和相应销量y(单位:件)(i=1,2,…8)并制作散点图(如图②),观察散点图可知,可用线性回归模型拟合yx的关系,试求y关于x的回归方程(系数精确到整数);
参考公式及数据:40,660,xiyi=206630,x12968,
(3)公司策划部选1200lnx+5000和x3+1200两个模型对销量与售价的关系进行拟合,现得到以下统计值(如表格所示):
 

x3+1200

52446.95
122.89

124650
相关指数
R
R
 
相关指数:R2=1
i)试比较R12R22的大小(给出结果即可),并由此判断哪个模型的拟合效果更好;
ii)根据(1)中所选的方案和(i)中所选的回归模型,求该产品的售价x定为多少时,总利润z可以达到最大?
当前题号:3 | 题型:解答题 | 难度:0.99
某市房管局为了了解该市市民月至月期间买二手房情况,首先随机抽样其中名购房者,并对其购房面积(单位:平方米,)进行了一次调查统计,制成了如图所示的频率分布直方图,接着调查了该市月至月期间当月在售二手房均价(单位:万元/平方米),制成了如图所示的散点图(图中月份代码分别对应月至月).
 
(1)试估计该市市民的购房面积的中位数
(2)从该市月至月期间所有购买二手房中的市民中任取人,用频率估计概率,记这人购房面积不低于平方米的人数为,求的数学期望;
(3)根据散点图选择两个模型进行拟合,经过数据处理得到两个回归方程,分别为,并得到一些统计量的值如下表所示:
 







 
请利用相关指数判断哪个模型的拟合效果更好,并用拟合效果更好的模型预测出月份的二手房购房均价(精确到
(参考数据).
(参考公式).
当前题号:4 | 题型:解答题 | 难度:0.99
设某地区乡居民人民币储蓄存款(年底余额)如下表:
年份
2012
2013
2014
2015
2016
2017
时间代号x
1
2
3
4
5
6
储蓄存款y(千亿元)
3.5
5
6
7
8
9.5
 
(1)求关于x的回归方程,并预测该地区2019年的人民币储蓄存款(用最简分数作答).
(2)在含有一个解释变量的线性模型中,恰好等于相关系数r的平方,当时,认为线性冋归模型是有效的,请计算并且评价模型的拟合效果(计算结果精确到0.001).
附:

当前题号:5 | 题型:解答题 | 难度:0.99
(1)已知两个变量线性相关,若它们的相关性越强,则相关系数的绝对值越接近于1.
(2)线性回归直线必过点
(3)对于分类变量AB的随机变量越大说明“AB有关系”的可信度越大.
(4)在刻画回归模型的拟合效果时,残差平方和越小,相关指数的值越大,说明拟合的效果越好.
(5)根据最小二乘法由一组样本点,求得的回归方程是,对所有的解释变量,的值一定与有误差.
以上命题正确的序号为____________.
当前题号:6 | 题型:填空题 | 难度:0.99
随着智能手机的普及,使用手机上网成为了人们日常生活的一部分,很多消费者对手机流量的需求越来越大.长沙某通信公司为了更好地满足消费者对流量的需求,准备推出一款流量包.该通信公司选了5个城市(总人数、经济发展情况、消费能力等方面比较接近)采用不同的定价方案作为试点,经过一个月的统计,发现该流量包的定价:(单位:元/月)和购买人数(单位:万人)的关系如表:
流量包的定价(元/月)
30
35
40
45
50
购买人数(万人)
18
14
10
8
5
 
(1)根据表中的数据,运用相关系数进行分析说明,是否可以用线性回归模型拟合的关系?并指出是正相关还是负相关;
(2)①求出关于的回归方程;
②若该通信公司在一个类似于试点的城市中将这款流量包的价格定位25元/ 月,请用所求回归方程预测长沙市一个月内购买该流量包的人数能否超过20 万人.
参考数据:.
参考公式:相关系数,回归直线方程,其中.
当前题号:7 | 题型:解答题 | 难度:0.99
在两个变量的回归模型中,分别选择了四个不同的模型,且它们的的值的大小关系为:则拟合效果最好的是(  )
A.模型1B.模型2C.模型3D.模型4
当前题号:8 | 题型:单选题 | 难度:0.99
下表给出的是某城市年至年,人均存款(万元),人均消费(万元)的几组对照数据.
年份




人均存款(万元)




人均消费(万元)




 
(1)试建立关于的线性回归方程;如果该城市年的人均存款为万元,请根据线性回归方程预测年该城市的人均消费;
(2)计算,并说明线性回归方程的拟合效果.
附:回归方程中斜率和截距的最小二乘估计公式分别为.
当前题号:9 | 题型:解答题 | 难度:0.99
2018年11月5日至10日,首届中国国际进口博览会在国家会展中心(上海)举行,吸引过来58个“一带一路”沿线国家的超过1000多家企业参展,成为共建“一带一路”的又一个重要支撑。某企业为了参加这次盛会,提升行业竞争力,加大了科技投入;该企业连续6年来得科技投入(百万元)与收益(百万元)的数据统计如下:

根据散点图的特点,甲认为样本点分布在指数曲线的周围,据此他对数据进行了一些初步处理,如下表:

其中
(1)()请根据表中数据,建立关于的回归方程(保留一位小数);
)根据所建立回归方程,若该企业想在下一年的收益达到2亿,则科技投入的费用至少要多少(其中)?
(2)乙认为样本点分布在二次曲线的周围,并计算得回归方程为,以及该回归模型的相关指数,试比较甲乙两位员工所建立的模型,谁的拟合效果更好.
附:对于一组数据,……,其回归直线方程的斜率和截距的最小二乘估计分别为,相关指数:
当前题号:10 | 题型:解答题 | 难度:0.99