- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 残差的计算
- + 相关指数的计算及分析
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某购物网站对在7座城市的线下体验店的广告费指出
万元和销售额
万元的数据统计如下表:
(1)若用线性回归模型拟合y与x关系,求y关于x的线性回归方程.
(2)若用对数函数回归模型拟合y与x的关系,可得回归方程
,经计算对数函数回归模型的相关指数约为0.95,请说明选择哪个回归模型更合适,并用此模型预测A城市的广告费用支出8万元时的销售额.
参考数据:
,
,
,
,
,
.
参考公式:
,
相关指数:
(注意:
与
公式中的相似之处)


城市 | A | B | C | D | E | F | G |
广告费支出![]() | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
销售额![]() | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
(1)若用线性回归模型拟合y与x关系,求y关于x的线性回归方程.
(2)若用对数函数回归模型拟合y与x的关系,可得回归方程

参考数据:






参考公式:


相关指数:



下列关于回归分析的说法中错误的是( )
A.残差图中残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适 |
B.两个模型中残差平方和越小的模型拟合的效果越好 |
C.在线性回归方程![]() |
D.甲、乙两个模型的![]() |
某印刷厂为了研究印刷单册书籍的成本y(单位:元)与印刷册数x(单位:千册)之间的关系,在印制某种书籍时进行了统计,相关数据见下表:
为了评价两种模型的拟合效果,完成以下任务:
(1)(ⅰ)完成下表(计算结果精确到0.1):

(ⅱ)分别计算模型甲与模型乙的残差平方和
及
,并通过比较
,
的大小,判断哪个模型拟合效果更好.
(2)该书上市后,受到广大读者的热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷,根据市场调查,新需求量为8千册(概率为0.8)或10千册(概率为0.2),若印刷厂以没测5元的价格将书籍出售给订货商,问印刷厂二次印刷8千册还是10千册恒获得更多的利润?(按(1)中拟合效果较好的模型计算印刷单册书的成本)

为了评价两种模型的拟合效果,完成以下任务:
(1)(ⅰ)完成下表(计算结果精确到0.1):

(ⅱ)分别计算模型甲与模型乙的残差平方和




(2)该书上市后,受到广大读者的热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷,根据市场调查,新需求量为8千册(概率为0.8)或10千册(概率为0.2),若印刷厂以没测5元的价格将书籍出售给订货商,问印刷厂二次印刷8千册还是10千册恒获得更多的利润?(按(1)中拟合效果较好的模型计算印刷单册书的成本)
下列说法正确的是( )
①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样.
②某地气象局预报:5月9日本地降水概率为
,结果这天没下雨,这表明天气预报并不科学.
③在回归分析模型中,残差平方和越小,说明模型的拟合效果越好.
④在回归直线方程
中,当解释变量
每增加1个单位时,预报变量
增加0.1个单位.
①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样.
②某地气象局预报:5月9日本地降水概率为

③在回归分析模型中,残差平方和越小,说明模型的拟合效果越好.
④在回归直线方程



A.①② | B.③④ | C.①③ | D.②④ |
已知某组数据采用了四种不同的回归方程进行回归分析,相关指数分别为
,
,
,
,则拟合效果最好的回归模型对应的相关指数R2的值是( )




A.![]() | B.![]() | C.![]() | D.![]() |
某景区的各景点从2009年取消门票实行免费开放后,旅游的人数不断地增加,不仅带动了该市淡季的旅游,而且优化了旅游产业的结构,促进了该市旅游向“观光、休闲、会展”三轮驱动的理想结构快速转变.下表是从2009年至2018年,该景点的旅游人数
(万人)与年份
的数据:

该景点为了预测2021年的旅游人数,建立了
与
的两个回归模型:
模型①:由最小二乘法公式求得
与
的线性回归方程
;
模型②:由散点图的样本点分布,可以认为样本点集中在曲线
的附近.
(1)根据表中数据,求模型②的回归方程
.(
精确到个位,
精确到0.01).
(2)根据下列表中的数据,比较两种模型的相关指数
,并选择拟合精度更高、更可靠的模型,预测2021年该景区的旅游人数(单位:万人,精确到个位).
参考公式、参考数据及说明:
①对于一组数据
,其回归直线
的斜率和截距的最小二乘法估计分别为
.②刻画回归效果的相关指数
;③参考数据:
,
.
表中
.


第![]() | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
旅游人数![]() | 300 | 283 | 321 | 345 | 372 | 435 | 486 | 527 | 622 | 800 |

该景点为了预测2021年的旅游人数,建立了


模型①:由最小二乘法公式求得



模型②:由散点图的样本点分布,可以认为样本点集中在曲线

(1)根据表中数据,求模型②的回归方程



(2)根据下列表中的数据,比较两种模型的相关指数

回归方程 | ①![]() | ②![]() |
![]() | 30407 | 14607 |
参考公式、参考数据及说明:
①对于一组数据






![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
5.5 | 449 | 6.05 | 83 | 4195 | 9.00 |
表中

关于x与y,有如下数据
有如下的两个模型:①
=6.5x+17.5,②
=7x+17.通过残差分析发现第①个线性模型比第②个拟合效果好.则
_______
,
_______
.(用大于,小于号填空,R,Q分别是相关指数和残差平方和)
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
有如下的两个模型:①






如图,在公路
两侧分别有
,
,…,
七个工厂,各工厂与公路
(图中粗线)之间有小公路连接.现在需要在公路
上设置一个车站,选择站址的标准是“使各工厂到车站的距离之和越小越好”.则下面结论中正确的是( )
①车站的位置设在
点好于
点;②车站的位置设在
点与
点之间公路上任何一点效果一样;③车站位置的设置与各段小公路的长度无关.







①车站的位置设在





A.① | B.② | C.①③ | D.②③ |
关于残差和残差图,下列说法正确的是( )
A.残差就是随机误差 |
B.残差图的纵坐标是残差 |
C.残差点均匀分布的带状区域的宽度越窄,说明模型拟合精度越高 |
D.残差点均匀分布的带状区域的宽度越窄,说明模型拟合精度越低 |