刷题首页
题库
高中数学
题干
某地区积极发展电商,通过近些年工作的开展在新农村建设和扶贫过程中起到了非常重要的作用,促进了农民生活富裕,为了更好地了解本地区某一特色产品的宣传费
(千元)对销量
(千件)的影响,统计了近六年的数据如下:
(1)若近6年的宣传费
与销量
呈线性分布,由前5年数据求线性回归直线方程,并写出
的预测值;
(2)若利润与宣传费的比值不低于20的年份称为“吉祥年”,在这6个年份中任意选2个年份,求这2个年份均为“吉祥年”的概率
附:回归方程
的斜率与截距的最小二乘法估计分别为
,
,其中
,
为
,
的平均数.
上一题
下一题
0.99难度 解答题 更新时间:2018-04-02 05:47:59
答案(点此获取答案解析)
同类题1
某单位为了了解用电量y(度)与气温x(℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:
气温x(℃)
18
13
10
-1
用电量(度)
24
34
38
64
由表中数据得线性回归方程
,预测当气温为-4℃时用电量度数为( )
A.68
B.67
C.65
D.64
同类题2
某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费
(单位:万元)对年销售量
(单位:吨)和年利润
(单位:万元)的影响。对近六年的年宣传费
和年销售量
的数据作了初步统计,得到如下数据:
年份
2013
2014
2015
2016
2017
2018
年宣传费
(万元)
38
48
58
68
78
88
年销售量
(吨)
16.8
18.8
20.7
22.4
24.0
25.5
经电脑拟,发现年宣传费
(万元)与年销售量
(吨)之间近似满足关系式
即
。对上述数据作了初步处理,得到相关的值如下表:
75.3
24.6
18.3
101.4
(1)根据所给数据,求
关于
的回归方程;
(2)规定当产品的年销售量
(吨)与年宣传费
(万元)的比值在区间
内时认为该年效益良好。现从这6年中任选2年,记其中选到效益良好年的数量为
,试求随机变量
的分布列和期望。(其中
为自然对数的底数,
)
附:对于一组数据
,其回归直线
中的斜率和截距的最小二乘估计分别为
同类题3
某车间为了规定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,得到的数据如表所示:
零件的个数
个
2
3
4
5
加工的时间
2.5
3
4
4.5
1
求出
y
关于
x
的线性回归方程
;
2
试预测加工10个零件需要多少时间?
同类题4
随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:
年份
2013
2014
2015
2016
2017
时间代号
1
2
3
4
5
储蓄存款
(千亿元)
5
6
7
8
10
(1)求
关于
的回归方程
(2)用所求回归方程预测该地区2018年(
)的人民币储蓄存款.
(参考公式:
,
,)
同类题5
为了响应全民健身,加大国际体育文化的交流,兰州市从2011年开始举办“兰州国际马拉松赛”,为了了解市民健身情况,某课题组跟踪了兰州某跑吧群在各届全程马拉松比赛中群友的平均成绩(单位:小时),具体如下:
(1)求
关于
的线性回归方程;
(2)利用(1)的回归方程,分析2011年到2015年该跑吧群的成绩变化情况,反映市民健身的效果,并预测2016年该跑吧群的比赛平均成绩.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
,
.
相关知识点
计数原理与概率统计
统计
变量间的相关关系
最小二乘法
求回归直线方程
线性回归