下列有关线性回归分析的四个命题:
①线性回归直线必过样本数据的中心点
②回归直线就是散点图中经过样本数据点最多的那条直线;
③当相关性系数时,两个变量正相关;
④如果两个变量的相关性越强,则相关性系数就越接近于.
其中真命题的个数为(   )
A.B.C.D.
当前题号:1 | 题型:单选题 | 难度:0.99
近年来,随着互联网技术的快速发展,共享经济覆盖的范围迅速扩张,继共享单车、共享汽车之后,共享房屋以“民宿”、“农家乐”等形式开始在很多平台上线.某创业者计划在某景区附近租赁一套农房发展成特色“农家乐”,为了确定未来发展方向,此创业者对该景区附近六家“农家乐”跟踪调查了天.得到的统计数据如下表,为收费标准(单位:元/日),为入住天数(单位:),以频率作为各自的“入住率”,收费标准与“入住率”的散点图如图
x
50
100
150
200
300
400
t
90
65
45
30
20
20
 

(1)若从以上六家“农家乐”中随机抽取两家深入调查,记为“入住率”超过的农家乐的个数,求的概率分布列;
(2)令,由散点图判断哪个更合适于此模型(给出判断即可,不必说明理由)?并根据你的判断结果求回归方程.(结果保留一位小数)
(3)若一年按天计算,试估计收费标准为多少时,年销售额最大?(年销售额入住率收费标准
参考数据:   
当前题号:2 | 题型:解答题 | 难度:0.99
有以下五组变量:
①某商品的销售价格与销售量;
②学生的学籍号与学生的数学成绩;
③坚持每天吃早餐的人数与患胃病的人数;
④气温与冷饮销售量;
⑤电瓶车的重量和行驶每千米的耗电量.
其中两个变量成正相关的是( )
A.①③B.②④C.②⑤D.④⑤
当前题号:3 | 题型:单选题 | 难度:0.99
房价收入比,是指住房价格与城市居民家庭年收入之比.幸福是人们对生活满意程度的一种主观感受.幸福指数是衡量人们这种感受具体程度的主观指标数.幸福指数由若干指标综合而成.如图是10所城市的“房价收入比”和“幸福指数”.
排名
城市
房价收入比
幸福指数
1
杭州
2.80
93.69
2
济南
2.32
91.56
3
合肥
2.21
85.48
4
苏州
2.0
88.17
5
成都
1.78
88.92
6
兰州
1.42
89.8
7
哈尔滨
1.39
92.35
8
昆明
1.30
87.21
9
海口
1.27
91.63
10
重庆
1.23
89.37
 
(1)填写以下列联表,并计算有没有的把握认为幸福指数高(大于89)低与房价收入比高(大于1.7)低有关;
 
幸福指数89以上
幸福指数89及以下
合计
房价收入比1.7以上
 
 
 
房价收入比1.7及以下
 
 
 
合计
 
 
 
 
(2)已知城市宜居指数表示房价收入比的排名序号,建立关于的线性回归方程,并估算排名11的城市的宜居指数.
参考公式和数据:,其中.

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
,其中.
当前题号:4 | 题型:解答题 | 难度:0.99
随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如下表.
 
非一线城市
一线城市
总计
愿生
45
20
65
不愿生
13
22
35
总计
58
42
100
 
附表:

0.050
0.010
0.001

3.841
6.635
10.828
 
算得,,参照附表,得到的正确结论是(  )
A.在犯错误的概率不超过的前提下,认为“生育意愿与城市级别有关”
B.在犯错误的概率不超过的前提下,认为“生育意愿与城市级别无关”
C.有以上的把握认为“生育意愿与城市级别有关”
D.有以上的把握认为“生育意愿与城市级别无关”
当前题号:5 | 题型:单选题 | 难度:0.99
随着科技的发展,网购已经逐渐融入了人们的生活,在家里不用出门就可以买到自己想要的东西,在网上付款即可,两三天就会送到自己的家门口,所以选择网购的人数在逐年增加.某网店统计了2014年一2018年五年来在该网店的购买人数(单位:人)各年份的数据如下表:
年份(
1
2
3
4
5

24
27
41
64
79
 
(1)依据表中给出的数据,是否可用线性回归模型拟合与时间(单位:年)的关系,请通过计算相关系数加以说明,(若,则该线性相关程度很高,可用线性回归模型拟合)
附:相关系数公式
参考数据     
(2)该网店为了更好的设计2019年的“双十一”网购活动安排,统计了2018年“双十一”期间8个不同地区的网购顾客用于网购的时间x(单位:小时)作为样本,得到下表
地区








时间
0.9
1.6
1.4
2.5
2.6
2.4
3.1
1.5
 
①求该样本数据的平均数
②通过大量数据统计发现,该活动期间网购时间近似服从正态分布,如果预计2019年“双十一”期间的网购人数大约为50000人,估计网购时间的人数.
(附:若随机变量服从正态分布
当前题号:6 | 题型:解答题 | 难度:0.99
某农科所发现,一种作物的年收获量(单位:)与它“相近”作物的株数具有相关关系(所谓两株作物“相近”是指它们的直线距离不超过),并分别记录了相近作物的株数为时,该作物的年收获量的相关数据如下:

(1)根据研究发现,该作物的年收获量可能和它“相近”作物的株数有以下两种回归方程:,利用统计知识,结合相关系数比较使用哪种回归方程更合适;
(2)农科所在如下图所示的正方形地块的每个格点(指纵、横直线的交叉点)处都种了一株该作物,其中每个小正方形的面积为,若在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.(注:年收获量以(1)中选择的回归方程计算所得数据为依据)

参考公式:线性回归方程为,其中
相关系数
参考数值:,其中.
当前题号:7 | 题型:解答题 | 难度:0.99
某设备的使用年数与所支出的维修总费用的统计数据如下表:
使用年数(单位:年)
2
3
4
5
6
维修总费用(单位:万元)





 
根据上表可得回归直线方程为.若该设备维修总费用超过12万元就报废,据此模型预测该设备最多可使用__________年.
当前题号:8 | 题型:填空题 | 难度:0.99
下列关于回归分析的说法中错误的有(   )个
①.残差图中残差点所在的水平带状区域越宽,则回归方程的预报精确度越高.
②.回归直线一定过样本中心().
③.两个模型中残差平方和越小的模型拟合的效果越好.
④.甲、乙两个模型的R2分别约为0.88和0.80,则模型乙的拟合效果更好.
A.4B.3C.2D.1
当前题号:9 | 题型:单选题 | 难度:0.99
随着互联网的兴起,越来越多的人选择网上购物.某购物平台为了吸引顾客,提升销售额,每年双十一都会进行某种商品的促销活动.该商品促销活动规则如下:①“价由客定”,即所有参与该商品促销活动的人进行网络报价,每个人并不知晓其他人的报价,也不知道参与该商品促销活动的总人数;②报价时间截止后,系统根据当年双十一该商品数量配额,按照参与该商品促销活动人员的报价从高到低分配名额;③每人限购一件,且参与人员分配到名额时必须购买.某位顾客拟参加2019双十一该商品促销活动,他为了预测该商品最低成交价,根据该购物平台的公告,统计了最近5年双十一参与该商品促销活动的人数(见下表)
年份
2014
2015
2016
2017
2018
年份编号t
1
2
3
4
5
参与人数(百万人)
0.5
0.6
1
1.4
1.7
 
(1)由收集数据的散点图发现,可用线性回归模型模拟拟合参与人数(百万人)与年份编号之间的相关关系.请用最小二乘法求关于的线性回归方程:,并预测2019年双十一参与该商品促销活动的人数;
(2)该购物平台调研部门对2000位拟参与2019年双十一该商品促销活动人员的报价价格进行了一个抽样调查,得到如下的一份频数表:
报价区间(千元)
 





频数
200
600
600
300
200
100
 
①求这2000为参与人员报价的平均值和样本方差(同一区间的报价可用该价格区间的中点值代替);
②假设所有参与该商品促销活动人员的报价可视为服从正态分布,且可分别由①中所求的样本平均值和样本方差估值.若预计2019年双十一该商品最终销售量为317400,请你合理预测(需说明理由)该商品的最低成交价.
参考公式即数据(i)回归方程:,其中
(ii)
(iii)若随机变量服从正态分布,则
当前题号:10 | 题型:解答题 | 难度:0.99