- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 回归分析
- 线性回归
- 误差分析
- 独立性检验
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
下列有关线性回归分析的四个命题:
①线性回归直线必过样本数据的中心点
;
②回归直线就是散点图中经过样本数据点最多的那条直线;
③当相关性系数
时,两个变量正相关;
④如果两个变量的相关性越强,则相关性系数
就越接近于
.
其中真命题的个数为( )
①线性回归直线必过样本数据的中心点

②回归直线就是散点图中经过样本数据点最多的那条直线;
③当相关性系数

④如果两个变量的相关性越强,则相关性系数


其中真命题的个数为( )
A.![]() | B.![]() | C.![]() | D.![]() |
近年来,随着互联网技术的快速发展,共享经济覆盖的范围迅速扩张,继共享单车、共享汽车之后,共享房屋以“民宿”、“农家乐”等形式开始在很多平台上线.某创业者计划在某景区附近租赁一套农房发展成特色“农家乐”,为了确定未来发展方向,此创业者对该景区附近六家“农家乐”跟踪调查了
天.得到的统计数据如下表,
为收费标准(单位:元/日),
为入住天数(单位:),以频率作为各自的“入住率”,收费标准
与“入住率”
的散点图如图

(1)若从以上六家“农家乐”中随机抽取两家深入调查,记
为“入住率”超过
的农家乐的个数,求
的概率分布列;
(2)令
,由散点图判断
与
哪个更合适于此模型(给出判断即可,不必说明理由)?并根据你的判断结果求回归方程.(
结果保留一位小数)
(3)若一年按
天计算,试估计收费标准为多少时,年销售额
最大?(年销售额
入住率
收费标准
)
参考数据:






x | 50 | 100 | 150 | 200 | 300 | 400 |
t | 90 | 65 | 45 | 30 | 20 | 20 |

(1)若从以上六家“农家乐”中随机抽取两家深入调查,记



(2)令




(3)若一年按





参考数据:




有以下五组变量:
①某商品的销售价格与销售量;
②学生的学籍号与学生的数学成绩;
③坚持每天吃早餐的人数与患胃病的人数;
④气温与冷饮销售量;
⑤电瓶车的重量和行驶每千米的耗电量.
其中两个变量成正相关的是( )
①某商品的销售价格与销售量;
②学生的学籍号与学生的数学成绩;
③坚持每天吃早餐的人数与患胃病的人数;
④气温与冷饮销售量;
⑤电瓶车的重量和行驶每千米的耗电量.
其中两个变量成正相关的是( )
A.①③ | B.②④ | C.②⑤ | D.④⑤ |
房价收入比,是指住房价格与城市居民家庭年收入之比.幸福是人们对生活满意程度的一种主观感受.幸福指数是衡量人们这种感受具体程度的主观指标数.幸福指数由若干指标综合而成.如图是10所城市的“房价收入比”和“幸福指数”.
(1)填写以下列联表,并计算有没有
的把握认为幸福指数高(大于89)低与房价收入比高(大于1.7)低有关;
(2)已知城市宜居指数
,
表示房价收入比的排名序号,建立
关于
的线性回归方程,并估算排名11的城市的宜居指数.
参考公式和数据:
,其中
.
,其中
,
,
,
,
,
.
排名 | 城市 | 房价收入比 | 幸福指数 |
1 | 杭州 | 2.80 | 93.69 |
2 | 济南 | 2.32 | 91.56 |
3 | 合肥 | 2.21 | 85.48 |
4 | 苏州 | 2.0 | 88.17 |
5 | 成都 | 1.78 | 88.92 |
6 | 兰州 | 1.42 | 89.8 |
7 | 哈尔滨 | 1.39 | 92.35 |
8 | 昆明 | 1.30 | 87.21 |
9 | 海口 | 1.27 | 91.63 |
10 | 重庆 | 1.23 | 89.37 |
(1)填写以下列联表,并计算有没有

| 幸福指数89以上 | 幸福指数89及以下 | 合计 |
房价收入比1.7以上 | | | |
房价收入比1.7及以下 | | | |
合计 | | | |
(2)已知城市宜居指数




参考公式和数据:


![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |








随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如下表.
附表:
由
算得,
,参照附表,得到的正确结论是( )
| 非一线城市 | 一线城市 | 总计 |
愿生 | 45 | 20 | 65 |
不愿生 | 13 | 22 | 35 |
总计 | 58 | 42 | 100 |
附表:
![]() | 0.050 | 0.010 | 0.001 |
![]() | 3.841 | 6.635 | 10.828 |
由


A.在犯错误的概率不超过![]() |
B.在犯错误的概率不超过![]() |
C.有![]() |
D.有![]() |
随着科技的发展,网购已经逐渐融入了人们的生活,在家里不用出门就可以买到自己想要的东西,在网上付款即可,两三天就会送到自己的家门口,所以选择网购的人数在逐年增加.某网店统计了2014年一2018年五年来在该网店的购买人数
(单位:人)各年份的数据如下表:
(1)依据表中给出的数据,是否可用线性回归模型拟合
与时间
(单位:年)的关系,请通过计算相关系数
加以说明,(若
,则该线性相关程度很高,可用线性回归模型拟合)
附:相关系数公式
参考数据

(2)该网店为了更好的设计2019年的“双十一”网购活动安排,统计了2018年“双十一”期间8个不同地区的网购顾客用于网购的时间x(单位:小时)作为样本,得到下表
①求该样本数据的平均数
;
②通过大量数据统计发现,该活动期间网购时间
近似服从正态分布
,如果预计2019年“双十一”期间的网购人数大约为50000人,估计网购时间
的人数.
(附:若随机变量
服从正态分布
则
,

年份(![]() | 1 | 2 | 3 | 4 | 5 |
![]() | 24 | 27 | 41 | 64 | 79 |
(1)依据表中给出的数据,是否可用线性回归模型拟合




附:相关系数公式

参考数据




(2)该网店为了更好的设计2019年的“双十一”网购活动安排,统计了2018年“双十一”期间8个不同地区的网购顾客用于网购的时间x(单位:小时)作为样本,得到下表
地区 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
时间 | 0.9 | 1.6 | 1.4 | 2.5 | 2.6 | 2.4 | 3.1 | 1.5 |
①求该样本数据的平均数

②通过大量数据统计发现,该活动期间网购时间



(附:若随机变量




某农科所发现,一种作物的年收获量
(单位:
)与它“相近”作物的株数
具有相关关系(所谓两株作物“相近”是指它们的直线距离不超过
),并分别记录了相近作物的株数为
时,该作物的年收获量的相关数据如下:

(1)根据研究发现,该作物的年收获量
可能和它“相近”作物的株数
有以下两种回归方程:
,利用统计知识,结合相关系数
比较使用哪种回归方程更合适;
(2)农科所在如下图所示的正方形地块的每个格点(指纵、横直线的交叉点)处都种了一株该作物,其中每个小正方形的面积为
,若在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.(注:年收获量以(1)中选择的回归方程计算所得数据为依据)

参考公式:线性回归方程为
,其中
,
,
相关系数
;
参考数值:
,
,
,其中
.






(1)根据研究发现,该作物的年收获量




(2)农科所在如下图所示的正方形地块的每个格点(指纵、横直线的交叉点)处都种了一株该作物,其中每个小正方形的面积为


参考公式:线性回归方程为



相关系数

参考数值:




某设备的使用年数
与所支出的维修总费用
的统计数据如下表:
根据上表可得回归直线方程为
.若该设备维修总费用超过12万元就报废,据此模型预测该设备最多可使用__________年.


使用年数![]() | 2 | 3 | 4 | 5 | 6 |
维修总费用![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
根据上表可得回归直线方程为

下列关于回归分析的说法中错误的有( )个
①.残差图中残差点所在的水平带状区域越宽,则回归方程的预报精确度越高.
②.回归直线一定过样本中心(
,
).
③.两个模型中残差平方和越小的模型拟合的效果越好.
④.甲、乙两个模型的R2分别约为0.88和0.80,则模型乙的拟合效果更好.
①.残差图中残差点所在的水平带状区域越宽,则回归方程的预报精确度越高.
②.回归直线一定过样本中心(


③.两个模型中残差平方和越小的模型拟合的效果越好.
④.甲、乙两个模型的R2分别约为0.88和0.80,则模型乙的拟合效果更好.
A.4 | B.3 | C.2 | D.1 |
随着互联网的兴起,越来越多的人选择网上购物.某购物平台为了吸引顾客,提升销售额,每年双十一都会进行某种商品的促销活动.该商品促销活动规则如下:①“价由客定”,即所有参与该商品促销活动的人进行网络报价,每个人并不知晓其他人的报价,也不知道参与该商品促销活动的总人数;②报价时间截止后,系统根据当年双十一该商品数量配额,按照参与该商品促销活动人员的报价从高到低分配名额;③每人限购一件,且参与人员分配到名额时必须购买.某位顾客拟参加2019双十一该商品促销活动,他为了预测该商品最低成交价,根据该购物平台的公告,统计了最近5年双十一参与该商品促销活动的人数(见下表)
(1)由收集数据的散点图发现,可用线性回归模型模拟拟合参与人数
(百万人)与年份编号
之间的相关关系.请用最小二乘法求
关于
的线性回归方程:
,并预测2019年双十一参与该商品促销活动的人数;
(2)该购物平台调研部门对2000位拟参与2019年双十一该商品促销活动人员的报价价格进行了一个抽样调查,得到如下的一份频数表:
①求这2000为参与人员报价
的平均值
和样本方差
(同一区间的报价可用该价格区间的中点值代替);
②假设所有参与该商品促销活动人员的报价
可视为服从正态分布
,且
与
可分别由①中所求的样本平均值
和样本方差
估值.若预计2019年双十一该商品最终销售量为317400,请你合理预测(需说明理由)该商品的最低成交价.
参考公式即数据(i)回归方程:
,其中
,
(ii)
(iii)若随机变量
服从正态分布
,则
,
,
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份编号t | 1 | 2 | 3 | 4 | 5 |
参与人数(百万人) | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(1)由收集数据的散点图发现,可用线性回归模型模拟拟合参与人数





(2)该购物平台调研部门对2000位拟参与2019年双十一该商品促销活动人员的报价价格进行了一个抽样调查,得到如下的一份频数表:
报价区间(千元) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 200 | 600 | 600 | 300 | 200 | 100 |
①求这2000为参与人员报价



②假设所有参与该商品促销活动人员的报价






参考公式即数据(i)回归方程:



(ii)

(iii)若随机变量




