在两个变量的回归模型中,分别选择了四个不同的模型,且它们的的值的大小关系为:则拟合效果最好的是(  )
A.模型1B.模型2C.模型3D.模型4
当前题号:1 | 题型:单选题 | 难度:0.99
下列说法中, 正确说法的个数是(   )
①在用列联表分析两个分类变量之间的关系时,随机变量的观测值越大,说明“AB有关系”的可信度越大
②以模型去拟合一组数据时,为了求出回归方程,设,将其变换后得到线性方程,则的值分别是和 0.3
③已知两个变量具有线性相关关系,其回归直线方程为,若,则
A.0B.1C.2D.3
当前题号:2 | 题型:单选题 | 难度:0.99
新疆在种植棉花有着得天独厚的自然条件,土质呈碱性,夏季温差大,阳光充足,光合作用充分,生长时间长,这种环境下种植的棉花绒长、品质好、产量髙,所以新疆棉花举世闻名.每年五月份,新疆地区进入灾害天气高发期,灾害天数对当年棉花产量有着重要影响,根据过去五年的数据统计,得到相关数据如下表:
灾害天气天数(天)
2
3
4
5
8
棉花产量(吨/公顷)
3.2
2.4
2
1.9
1.7
 
根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,
方程甲:,方程乙:.
(1)为了评价两种模型的拟合效果,完成以下任务:① 完成下表;(计算结果精确到0.1)
②分别计算模型甲与模型乙的残差平方和,并比铰的大小,判断哪个模型拟合效果更好?
灾害天气天数(天)
2
3
4
5
8
棉花产量(吨公顷)
3.2
2.4
2
1.9
1.7
模型甲
估计值
 
2.4
2.1
 
1.6
残差
 
0

 
0.1
模型乙
估计值
 
2.3
2
1.9
 
残差
 
0.1
0
0
 
 
(2)根据天气预报,今年五月份新疆市灾害天气是6天的概率是0.5,灾害天气是7天的概率为0.4,灾害天气是10天的概率为0.1,若何女士在新疆市承包了15公顷地种植棉花,请你根据第(1)问中拟合效果较好的模型估计一下何女士今年棉花的产量.(计算过程中所有结果精确到0.01)
当前题号:3 | 题型:解答题 | 难度:0.99
2018年11月5日至10日,首届中国国际进口博览会在国家会展中心(上海)举行,吸引过来58个“一带一路”沿线国家的超过1000多家企业参展,成为共建“一带一路”的又一个重要支撑。某企业为了参加这次盛会,提升行业竞争力,加大了科技投入;该企业连续6年来得科技投入(百万元)与收益(百万元)的数据统计如下:

根据散点图的特点,甲认为样本点分布在指数曲线的周围,据此他对数据进行了一些初步处理,如下表:

其中
(1)()请根据表中数据,建立关于的回归方程(保留一位小数);
)根据所建立回归方程,若该企业想在下一年的收益达到2亿,则科技投入的费用至少要多少(其中)?
(2)乙认为样本点分布在二次曲线的周围,并计算得回归方程为,以及该回归模型的相关指数,试比较甲乙两位员工所建立的模型,谁的拟合效果更好.
附:对于一组数据,……,其回归直线方程的斜率和截距的最小二乘估计分别为,相关指数:
当前题号:4 | 题型:解答题 | 难度:0.99
红铃虫是棉花的主要害虫之一,能对农作物造成严重伤害.每只红铃虫的平均产卵数和平均温度有关.现收集了以往某地的7组数据,得到下面的散点图及一些统计量的值.
平均温度/℃
21
23
25
27
29
32
35
平均产卵数/个
7
11
21
24
66
115
325
 





27.429
81.286
3.612
40.182
147.714
 
表中

(1)根据散点图判断,(其中为自然对数的底数)哪一个更适宜作为平均产卵数关于平均温度的回归方程类型?(给出判断即可不必说明理由)并由判断结果及表中数据,求出关于的回归方程.(计算结果精确到小数点后第三位)
(2)根据以往统计,该地每年平均温度达到28℃以上时红铃虫会造成严重伤害,需要人工防治,其他情况均不需要人工防治,记该地每年平均温度达到28℃以上的概率为.
(ⅰ)记该地今后5年中,恰好需要3次人工防治的概率为,求的最大值,并求出相应的概率.
(ⅱ)当取最大值时,记该地今后5年中,需要人工防治的次数为,求的数学期望和方差.
附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计分别为:.
当前题号:5 | 题型:解答题 | 难度:0.99
已知取值如表:












 
画散点图分析可知:线性相关,且求得回归方程为,则__________.
当前题号:6 | 题型:填空题 | 难度:0.99
某购物商场分别推出支付宝和微信“扫码支付”购物活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用“扫码支付”.现统计了活动刚推出一周内每天使用扫码支付的人次,用表示活动推出的天数,表示每天使用扫码支付的人次,统计数据如下表所示:
















 
(1)根据散点图判断,在推广期内,扫码支付的人次关于活动推出天数的回归方程适合用来表示,求出该回归方程,并预测活动推出第天使用扫码支付的人次;
(2)推广期结束后,商场对顾客的支付方式进行统计,结果如下表:
支付方式
现金
会员卡
扫码
比例



 
商场规定:使用现金支付的顾客无优惠,使用会员卡支付的顾客享受折优惠,扫码支付的顾客随机优惠,根据统计结果得知,使用扫码支付的顾客,享受折优惠的概率为,享受折优惠的概率为,享受折优惠的概率为.现有一名顾客购买了元的商品,根据所给数据用事件发生的频率来估计相应事件发生的概率,估计该顾客支付的平均费用是多少?
参考数据:设
参考公式:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计公式分别为:
当前题号:7 | 题型:解答题 | 难度:0.99
在建立两个变量的回归模型中,分别选择了4个不同的模型,结合它们的相关指数判断,其中拟合效果最好的为(   )
A.模型1的相关指数为0.85B.模型2的相关指数为0.25
C.模型3的相关指数为0.7D.模型4的相关指数为0.3
当前题号:8 | 题型:单选题 | 难度:0.99
已知下表为之间的一组数据,若线性相关,则的回归直线必过点(    )
x
0
1
2
3
y
1
3
5
7
 
A.(2,2)B.(1.5,0)C.(1,2)D.(1.5,4)
当前题号:9 | 题型:单选题 | 难度:0.99