- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 回归分析
- 线性回归
- 误差分析
- 独立性检验
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在两个变量
与
的回归模型中,分别选择了四个不同的模型,且它们的
的值的大小关系为:则
拟合效果最好的是( )




A.模型1 | B.模型2 | C.模型3 | D.模型4 |
下列说法中, 正确说法的个数是( )
①在用
列联表分析两个分类变量
与
之间的关系时,随机变量
的观测值
越大,说明“A与B有关系”的可信度越大
②以模型
去拟合一组数据时,为了求出回归方程,设
,将其变换后得到线性方程
,则
,
的值分别是
和 0.3
③已知两个变量具有线性相关关系,其回归直线方程为
,若
,
,
,则
①在用





②以模型






③已知两个变量具有线性相关关系,其回归直线方程为





A.0 | B.1 | C.2 | D.3 |
新疆在种植棉花有着得天独厚的自然条件,土质呈碱性,夏季温差大,阳光充足,光合作用充分,生长时间长,这种环境下种植的棉花绒长、品质好、产量髙,所以新疆棉花举世闻名.每年五月份,新疆地区进入灾害天气高发期,灾害天数对当年棉花产量有着重要影响,根据过去五年的数据统计,得到相关数据如下表:
根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,
方程甲:
,方程乙:
.
(1)为了评价两种模型的拟合效果,完成以下任务:① 完成下表;(计算结果精确到0.1)
②分别计算模型甲与模型乙的残差平方和
及
,并比铰
的大小,判断哪个模型拟合效果更好?
(2)根据天气预报,今年五月份新疆
市灾害天气是6天的概率是0.5,灾害天气是7天的概率为0.4,灾害天气是10天的概率为0.1,若何女士在新疆
市承包了15公顷地种植棉花,请你根据第(1)问中拟合效果较好的模型估计一下何女士今年棉花的产量.(计算过程中所有结果精确到0.01)
灾害天气天数![]() | 2 | 3 | 4 | 5 | 8 |
棉花产量![]() | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,
方程甲:


(1)为了评价两种模型的拟合效果,完成以下任务:① 完成下表;(计算结果精确到0.1)
②分别计算模型甲与模型乙的残差平方和



灾害天气天数![]() | 2 | 3 | 4 | 5 | 8 | |
棉花产量![]() | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估计值![]() | | 2.4 | 2.1 | | 1.6 |
残差![]() | | 0 | ![]() | | 0.1 | |
模型乙 | 估计值![]() | | 2.3 | 2 | 1.9 | |
残差![]() | | 0.1 | 0 | 0 | |
(2)根据天气预报,今年五月份新疆


2018年11月5日至10日,首届中国国际进口博览会在国家会展中心(上海)举行,吸引过来58个“一带一路”沿线国家的超过1000多家企业参展,成为共建“一带一路”的又一个重要支撑。某企业为了参加这次盛会,提升行业竞争力,加大了科技投入;该企业连续6年来得科技投入
(百万元)与收益
(百万元)的数据统计如下:

根据散点图的特点,甲认为样本点分布在指数曲线
的周围,据此他对数据进行了一些初步处理,如下表:

其中
,
.
(1)(
)请根据表中数据,建立
关于
的回归方程(保留一位小数);
(
)根据所建立回归方程,若该企业想在下一年的收益达到2亿,则科技投入的费用至少要多少(其中
)?
(2)乙认为样本点分布在二次曲线
的周围,并计算得回归方程为
,以及该回归模型的相关指数
,试比较甲乙两位员工所建立的模型,谁的拟合效果更好.
附:对于一组数据
,
,……
,其回归直线方程
的斜率和截距的最小二乘估计分别为
,
,相关指数:
.



根据散点图的特点,甲认为样本点分布在指数曲线


其中


(1)(



(


(2)乙认为样本点分布在二次曲线



附:对于一组数据







红铃虫是棉花的主要害虫之一,能对农作物造成严重伤害.每只红铃虫的平均产卵数
和平均温度
有关.现收集了以往某地的7组数据,得到下面的散点图及一些统计量的值.
表中
,

(1)根据散点图判断,
与
(其中
为自然对数的底数)哪一个更适宜作为平均产卵数
关于平均温度
的回归方程类型?(给出判断即可不必说明理由)并由判断结果及表中数据,求出
关于
的回归方程.(计算结果精确到小数点后第三位)
(2)根据以往统计,该地每年平均温度达到28℃以上时红铃虫会造成严重伤害,需要人工防治,其他情况均不需要人工防治,记该地每年平均温度达到28℃以上的概率为
.
(ⅰ)记该地今后5年中,恰好需要3次人工防治的概率为
,求
的最大值,并求出相应的概率
.
(ⅱ)当
取最大值时,记该地今后5年中,需要人工防治的次数为
,求
的数学期望和方差.
附:对于一组数据
,其回归直线
的斜率和截距的最小二乘法估计分别为:
,
.


平均温度![]() | 21 | 23 | 25 | 27 | 29 | 32 | 35 |
平均产卵数![]() | 7 | 11 | 21 | 24 | 66 | 115 | 325 |
![]() | ![]() | ![]() | ![]() | ![]() |
27.429 | 81.286 | 3.612 | 40.182 | 147.714 |
表中



(1)根据散点图判断,







(2)根据以往统计,该地每年平均温度达到28℃以上时红铃虫会造成严重伤害,需要人工防治,其他情况均不需要人工防治,记该地每年平均温度达到28℃以上的概率为

(ⅰ)记该地今后5年中,恰好需要3次人工防治的概率为



(ⅱ)当



附:对于一组数据




某购物商场分别推出支付宝和微信“扫码支付”购物活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用“扫码支付”.现统计了活动刚推出一周内每天使用扫码支付的人次,用
表示活动推出的天数,
表示每天使用扫码支付的人次,统计数据如下表所示:
(1)根据散点图判断,在推广期内,扫码支付的人
次关于活动推出天数
的回归方程适合用
来表示,求出该回归方程,并预测活动推出第
天使用扫码支付的人次;
(2)推广期结束后,商场对顾客的支付方式进行统计,结果如下表:
商场规定:使用现金支付的顾客无优惠,使用会员卡支付的顾客享受
折优惠,扫码支付的顾客随机优惠,根据统计结果得知,使用扫码支付的顾客,享受
折优惠的概率为
,享受
折优惠的概率为
,享受
折优惠的概率为
.现有一名顾客购买了
元的商品,根据所给数据用事件发生的频率来估计相应事件发生的概率,估计该顾客支付的平均费用是多少?
参考数据:设
,
,
,
参考公式:对于一组数据
,
,…,
,其回归直线
的斜率和截距的最小二乘估计公式分别为:
,
.


![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)根据散点图判断,在推广期内,扫码支付的人




(2)推广期结束后,商场对顾客的支付方式进行统计,结果如下表:
支付方式 | 现金 | 会员卡 | 扫码 |
比例 | ![]() | ![]() | ![]() |
商场规定:使用现金支付的顾客无优惠,使用会员卡支付的顾客享受








参考数据:设




参考公式:对于一组数据






在建立两个变量
与
的回归模型中,分别选择了4个不同的模型,结合它们的相关指数
判断,其中拟合效果最好的为( )



A.模型1的相关指数![]() | B.模型2的相关指数![]() |
C.模型3的相关指数![]() | D.模型4的相关指数![]() |
已知下表为
与
之间的一组数据,若
与
线性相关,则
与
的回归直线
必过点( )







x | 0 | 1 | 2 | 3 |
y | 1 | 3 | 5 | 7 |
A.(2,2) | B.(1.5,0) | C.(1,2) | D.(1.5,4) |