- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- + 统计案例
- 回归分析
- 独立性检验
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
通过随机询问50名性别不同的大学生是否爱好某项运动,得到如下的列联表,由
得
参照附表,得到的正确结论是



参照附表,得到的正确结论是


A.有99.5%以上的把握认为“爱好该项运动与性别有关” |
B.有99.5%以上的把握认为“爱好该项运动与性别无关” |
C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关” |
D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” |
利用独立性检验的方法调查高中生的写作水平与离好阅读是否有关,随机询问120名高中生是否喜好阅读,利用2×2列联表,由计算可得K2=4.236
参照附表,可得正确的结论是( )
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参照附表,可得正确的结论是( )
A.有95%的把握认为“写作水平与喜好阅读有关” |
B.有97.5%的把握认为“写作水平与喜好阅读有关” |
C.有95%的把握认为“写作水平与喜好阅读无关” |
D.有97.5%的把握认为“写作水平与喜好阅读无关” |
通过随机询问50名性别不同的大学生是否爱好某项运动,得到如下的列联表,由
得
参照附表,得到的正确结论是( )


| 爱好 | 不爱好 | 合计 |
男生 | 20 | 5 | 25 |
女生 | 10 | 15 | 25 |
合计 | 30 | 20 | 50 |
![]() | 0.010 | 0.005 | 0.001 |
![]() | 6.635 | 7.879 | 10.828 |
A.有99.5%以上的把握认为“爱好该项运动与性别有关” |
B.有99.5%以上的把握认为“爱好该项运动与性别无关” |
C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关” |
D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” |
某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:
(1)分别估计男、女顾客对该商场服务满意的概率;
(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?
附:
.
| 满意 | 不满意 |
男顾客 | 40 | 10 |
女顾客 | 30 | 20 |
(1)分别估计男、女顾客对该商场服务满意的概率;
(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?
附:

P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
近年来,我国大力发展新能源汽车工业,新能源汽车(含电动汽车)销量已跃居全球首位.某电动汽车厂新开发了一款电动汽车,并对该电动汽车的电池使用情况进行了测试,其中剩余电量
与行驶时间
(单位:小时)的测试数据如下:
如果剩余电量不足
,则电池就需要充电.
(1)从
组数据中选出
组作回归分析,设
表示需要充电的数据组数,求
的分布列及数学期望;
(2)根据电池放电的特点,剩余电量
与时间
工满足经验关系式:
,通过散点图可以发现
与
之间具有相关性.设
,利用表格中的前
组数据求相关系数
,并判断是否有
的把握认为
与
之间具有线性相关关系.(当相关系数
满足
时,则认为
的把握认为两个变量具有线性相关关系);
(3)利用
与
的相关性及前
组数据求出
与工的回归方程.(结果保留两位小数)
附录:相关数据:
,
,
,
.
前9组数据的一些相关量:
相关公式:对于样本
.其回归直线
的斜率和截距的最小二乘估计公式分别为:
,
,相关系数
.


![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
如果剩余电量不足

(1)从




(2)根据电池放电的特点,剩余电量














(3)利用




附录:相关数据:




前9组数据的一些相关量:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
合计 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
相关公式:对于样本





如今我们的互联网生活日益丰富,除了可以很方便地网购,网上叫外卖也开始成为不少人日常生活中不可或缺的一部分,为了解网络外卖在
市的普及情况,
市某调查机构借助网络进行了关于网络外卖的问卷调查,并从参与调查的网民中抽取了200人进行抽样分析,得到表格(单位:人).

(1)根据表中数据,能否在犯错误的概率不超过0.15的前提下认为
市使用网络外卖的情况与性别有关?
(2)①现从所抽取的女网民中利用分层抽样的方法再抽取5人,再从这5人中随机选出了3人赠送外卖优惠券,求选出的3人中至少有2人经常使用网络外卖的概率;
②将频率视为概率,从
市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用网络外卖的人数为
,求
的数学期望和方差.
参考公式:
,其中
参考数据:



(1)根据表中数据,能否在犯错误的概率不超过0.15的前提下认为

(2)①现从所抽取的女网民中利用分层抽样的方法再抽取5人,再从这5人中随机选出了3人赠送外卖优惠券,求选出的3人中至少有2人经常使用网络外卖的概率;
②将频率视为概率,从



参考公式:


参考数据:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
某周末,郑州方特梦幻王国汇聚了八方来客. 面对该园区内相邻的两个主题公园“千古蝶恋”和“西游传说”,成年人和未成年人选择游玩的意向会有所不同. 某统计机构对园区内的100位游客(这些游客只在两个主题公园中二选一)进行了问卷调查. 调查结果显示,在被调查的50位成年人中,只有10人选择“西游传说”,而选择“西游传说”的未成年人有20人.

(1)根据题意,请将下面的
列联表填写完整;
(2)根据列联表的数据,判断是否有99%的把握认为选择哪个主题公园与年龄有关.
附参考公式与表:
. 

(1)根据题意,请将下面的

(2)根据列联表的数据,判断是否有99%的把握认为选择哪个主题公园与年龄有关.
附参考公式与表:


随着节能减排意识深入人心,共享单车在各大城市大范围推广,越来越多的市民在出行时喜欢选择骑行共享单车.为了研究广大市民在共享单车上的使用情况,某公司在我市随机抽取了100名用户进行调查,得到如下数据:
(1)如果用户每周使用共享单车超过3次,那么认为其“喜欢骑行共享单车”.请完成下面的2×2列联表,并判断能否在犯错误概率不超过0.05的前提下,认为是否“喜欢骑行共享单车”与性别有关;
(2)每周骑行共享单车6次及6次以上的用户称为“骑行达人”,将频率视为概率,在我市所有的“骑行达人”中随机抽取4名,求抽取的这4名“骑车达人”中,既有男性又有女性的概率.
附表及公式:
,其中
;
每周使用次数 | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 4 | 3 | 3 | 7 | 8 | 30 |
女 | 6 | 5 | 4 | 4 | 6 | 20 |
合计 | 10 | 8 | 7 | 11 | 14 | 50 |
(1)如果用户每周使用共享单车超过3次,那么认为其“喜欢骑行共享单车”.请完成下面的2×2列联表,并判断能否在犯错误概率不超过0.05的前提下,认为是否“喜欢骑行共享单车”与性别有关;
| 不喜欢骑行共享单车 | 喜欢骑行共享单车 | 合计 |
男 | | | |
女 | | | |
合计 | | | |
(2)每周骑行共享单车6次及6次以上的用户称为“骑行达人”,将频率视为概率,在我市所有的“骑行达人”中随机抽取4名,求抽取的这4名“骑车达人”中,既有男性又有女性的概率.
附表及公式:


![]() | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
一则“清华大学要求从 2017级学生开始,游泳达到一定标准才能毕业”的消息在体育界和教育界引起了巨大反响.其实,已有不少高校将游泳列为必修内容.
某中学拟在高一-下学期开设游泳选修课,为了了解高--学生喜欢游泳是否与性别有关,该学校对100名高一新生进行了问卷调查,得到如下
列联表:
已知在这100人中随机抽取1人,抽到喜欢游泳的学生的概率为
.
(1).请将上述列联表
补充完整,并判断是否可以在犯错误的概率不超过0.001的前提下认为喜欢游泳与性别有关.
(2)已知在被调查的学生中有6名来自高一(1) 班,其中4名喜欢游泳,现从这6名学生中随机抽取2人,求恰有1人喜欢游泳的概率.
附:
某中学拟在高一-下学期开设游泳选修课,为了了解高--学生喜欢游泳是否与性别有关,该学校对100名高一新生进行了问卷调查,得到如下

| 喜欢游泳 | 不喜欢游泳 | 合计 |
男生 | 40 | | |
女生 | | 30 | |
合计 | | | |
已知在这100人中随机抽取1人,抽到喜欢游泳的学生的概率为

(1).请将上述列联表

(2)已知在被调查的学生中有6名来自高一(1) 班,其中4名喜欢游泳,现从这6名学生中随机抽取2人,求恰有1人喜欢游泳的概率.
附:

![]() | 0.10 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
某媒体对“男女延迟退休″这一公众关注的问题进行名意调查,如表是在某单位得到的数据:
(I)能否有97.5%的把握认为对这一问题的看法与性别有关?
(II)从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出3人进行陈述发言,设发言的女士人数为X,求X的分布列和期望.
参考公式:
| 赞同 | 反对 | 合计 |
男 | 50 | 150 | 200 |
女 | 30 | 170 | 200 |
合计 | 80 | 320 | 400 |
(I)能否有97.5%的把握认为对这一问题的看法与性别有关?
(II)从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出3人进行陈述发言,设发言的女士人数为X,求X的分布列和期望.
参考公式:

![]() | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |